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Abstract

Computer networks evolved from being static structures consisting of uniform hosts,
to dynamic systems with varying usage scenarios and many heterogeneous clients.
Due to the large number of devices in contemporary networks, the integration of
new network protocols is challenging. For this reason, new protocol designs tend
to be flexible in order to be able to fulfill future requirements without the need
for new protocols and adaptable in order to be applicable in new usage scenarios.
Hence, network protocols developed from comparatively simple data communication
services to highly adaptable and flexible, distributed software.

The mentioned evolution of network protocols at the conceptual level is not conse-
quently applied to at the implementation level. Various protocol implementations
utilize a monolithic software approach. This thesis discusses the design and imple-
mentation of adaptable and flexible protocols and argues that the application of
monolithic software concepts is not sustainable in the observed domain. Instead, we
examine the application of software modularity to network protocols by creating a
concept for modular protocol implementations. We design and implement the mod-
ularization library libmod and prove its feasibility by integrating it with an existing
implementation of the Host Identity Protocol as an example for flexible protocols.
Based on qualitative and quantitative analysis, we conclude the superiority of mod-
ular software in comparison to monolithic software regarding the overall software
quality in the field of network protocol implementation.





Acknowledgments

Many thanks to the entire Distributed Systems team for the nice working atmosphere
and the support in creating this thesis. Special thanks to René Hummen for the
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1
Introduction

Early computer networks needed to provide less functionality compared to contem-
porary networks. They connected a few known, uniform computers and provided
only basic functionality such as e-mail or simple file transfer. The employed network
protocols had fixed structures with static packet formats and were typically realized
as monolithic software. In contrast, today’s networks consist of numerous differing
devices and have to cope with recent challenges, such as the increasing number of
mobile network participants. Since the global deployment of new network protocols
is challenging, recent protocol specifications aim to be adaptable in order to allow
the compliance of future needs. Protocols with this forward compatibility entail flex-
ible structures; for instance, protocol headers are designed extensible as to allow the
exchange of information previously not thought of.

This thesis examines the design and implementation of adaptable and flexible proto-
cols. As starting point, we analyze the feasibility of the monolithic software concept
on protocol implementations. Monolithic software persists of one continuous piece
of source code and there are no defined components with well-defined interfaces,
nor a layered application architecture. This approach shortens the design phase to
a minimum; according to their intuition, developers can almost immediately start
implementing protocol functionality.

The monolithic software approach is functional for classical protocols, as long as
the specification does not change. But the loose architecture can cause various
drawbacks at the implementation level, such as unpredictable dependencies in the
source code. For adaptable and flexible protocols, the application of the monolithic
software approach is not sustainable, because of the predictable need for modifying
the protocol implementation. In this thesis, we examine the feasibility of software
modularity in the field of adaptable and flexible protocols. In modular software each
component or module has an explicitly defined interface for the interaction with other
components. Therefore, the dependencies between components are well-known and
described in the interfaces.
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Well-designed, modular software is more flexible than monolithic software, because
modules can be replaced by other modules with the same interface without any
modifications to the remaining components. Furthermore, changes inside one mod-
ule that neither change the syntax nor the semantics of the external interface, do
not enforce changes outside the module, because all module interaction bases on the
defined interface. This directly increases the maintainability of software. Develop-
ing modular software is less complex, because each encapsulated functionality can
be implemented separately and it is not necessary to comprehend the entire system
all at once.

In this thesis we prove the superiority of the modular concept over the monolithic
one in the field of adaptable and flexible protocols. Our argumentation regards
conceptual and implementation related issues. As mentioned above we identify the
following key advantages of modular software:

• Higher flexibility of functionality

• Better maintainability

• Reduced implementation complexity

Our work presents the general modularization library libmod for the implementation
of adaptable and flexible protocols. To prove our conceptual statement, we discuss
its application to an existing protocol implementation; the Host Identity Protocol
for Linux (HIPL). libmod focuses on two usage scenarios: Firstly, it provides func-
tionalities for creating modular protocol implementations from scratch. Secondly,
libmod can be used to re-engineering existing protocol implementations with the
goal to create modular software. The conducted performance measurements on per-
sonal computers and embedded hardware, such as smartphones or routers, show that
the overhead introduced through the modularization is negligible.

The thesis is structured as follows. Chapter 2 provides the reader with background
information on the used concepts. Then Chapter 3 introduces the observed research
area by presenting related approaches. The problem analysis in Chapter 4 contains
the exact problem statement that is covered in this thesis. Our modular design for
adaptable and flexible protocols is introduced in Chapter 5 and aims to solve the
depicted problems. We prove the practicability of our design by applying it to the
Host Identity Protocol for Linux. While Chapter 6 describes the implementation,
Chapter 7 contains the evaluation results of this process. We complete this thesis
with our conclusion in Chapter 8.
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Background

This chapter gives an introduction into topics software engineering and network
protocols. Firstly, we familiarize the reader with the basics of the used software en-
gineering concepts. The applicability of these concepts to protocol implementations
is the object of our analysis. Secondly, we introduce the Open System Intercon-
nection (OSI) Reference Model and the Transmission Control Protocol (TCP) as
well as the Host Identity Protocol (HIP). The reference model defines nomenclature
used later and depicts the interaction of different protocols. TCP and HIP will be
considered as case studies throughout this thesis.

2.1 Software Engineering

The Institute of Electrical and Electronics Engineers (IEEE) defines software engi-
neering [22] as:

software engineering. (1) The application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance
of software; that is, the application of engineering to software. (2) The
study of approaches as in (1).

We use the term software engineering in the sense of this definition.

2.1.1 Software Development Process

A Software Development Process is a sequence of activities with the goal to cre-
ate functional software in an efficient way. There are several models describing
software development on an abstract level, such as the waterfall model [39] or the
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spiral model [39]. Process models generally contain the following phases: require-
ments analysis / specification, design, implementation, verification, integration and
maintenance.

The Requirements Analysis phase contains the process of breaking down the
customer and user needs. There are several methods to figure out which functionality
the planned system should provide. For example, stakeholder interviews, use case
analysis and prototyping are well-known approaches. Result of the requirements
analysis is a specification in written form.

During the Design phase, software engineers work on how to realize the specifi-
cation. These considerations effect in the software architecture. Through this, an
abstract model of the software is built and its structure is defined. In design-focused
software development approaches, software components and their interaction are
also specified during the design phase.

Implementation is the transfer from design to software. Developers use a pro-
gramming paradigm (for example object-orientation, imperative programming) and
a programming language (for example Java, C) to realize the designed system. The
result is a computer program or application that should fulfil the requirements.

There are multiple possibilities of error in a software development process. To avoid
this, verification checks the two transitions from specification to design (design
errors) and from design to software (implementation errors, bugs). These checks
can be a static analysis of sources or even a dynamic execution of the application
against test cases. The software is considered as functioning when all checks were
successful.

Integration is the deployment of software in the customers environment. During
this phase, the new software is made accessible to the customer. Today’s software
generally interacts with other software systems. Software rarely operates isolated.
For this reason, the integration phase also contains the interconnection of collabo-
rating software systems. If necessary, interfaces can be configured and the systems
adjusted to each other.

The last phase of software development is the Maintenance. Software maintenance
is the modification of software after its integration. Besides error correction it in-
cludes adaption to new requirements, (performance) improvement and prevention.
Prevention is an important activity, because software does not abrade in classical
sense. Even over years of usage, the software functionality does not change. But in
most cases, the environment in which the software is used, changes. Therefore, a
software becomes less usable over time. This fact is commonly known as software
aging[35]. Software maintenance, and especial prevention, aims to counteract this
aging. Dependent on the quality of software and the applied paradigms, software
can be more or less maintainable. Software maintainability can be expressed as the
sum of understandability, modifiability, extendibility and testability [12].

2.1.2 Monolithic Software

Monolithic software denotes software consisting of one part. The entire functional-
ity (including user interface, access control, error handling and data processing) is
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implemented in one component. Thus, the design phase for monolithic software is
short. For example, the classification of components and their interfaces is omitted.
The implementation can begin early and hence the development process is accel-
erated; but only for the short term. Due to the loose architecture, dependencies
may occur anywhere in the source code. Therefore, modifications can enforce other
changes at dependent positions - this complicates the maintenance of monolithic
software. Thus, the last phase of the development process is more time consuming
than in other approaches.

In general, the monolithic software approach is useful for small programs or programs
with fixed functionality. For these programs assumptions on the program flow can
be made. Hence, direct statements are applicable. This immediacy tends to result
in better performance.

Throughout this thesis we use the term monolithic to denote the characteristics of
software on the implementation level as stated above. There is another meaning of
monolithic, regarding operating system kernels. A kernel is called monolithic if all
operating system components (including process management, file system, device
management) are built together and run in the same context; the privileged kernel
space. In contrast, microkernel operating systems are built of multiple separated
components. Only the minimal functionality of the operating system runs in the
kernel space - everything else runs in the user space with limited privileges. Popular
examples for monolithic kernels are most UNIX variants[7].

2.1.3 Modular Software

Modular Software is a design approach based on the design concept Separation of
Concerns [39]. The basic idea of this concept is, to subdivide the considered problem
into multiple, self-contained concerns. The complexity of realizing one concern is
smaller than the overall complexity. Furthermore, the accumulated complexity for
realizing all concerns can be smaller than the overall complexity, because it is not
necessary to deal with the entire problem all at once. Instead the sub-problems (or
concerns) are identified, solved and combined into the overall solution. This is a
well-known divide-and-conquer strategy. In many cases the effort of division and
assembly is minor compared to the effort of understanding the entire problem[11].

Modularity is an application of the separation of concerns approach to software de-
sign. The overall functionality of a software is divided into multiple building blocks
called modules. Modularity reduces implementation complexity, because modules
can be implemented one after another. The modular design needs to specify in-
terfaces for all modules, otherwise the module integration would fail. The modules
interact exclusively through the defined interfaces and therefore all dependencies
are explicit. Due to this explicitness, one can use a module without knowing how
the implementation is realized - only the interface needs to be known. Therefore,
changes inside a module do not require changes in other modules. One can develop
and maintain a module, without consideration of the dependent modules, as long as
the interface is stable. This provides a high flexibility and good maintainability of
the software. Multiple developers can work independently on different modules and
- as long as the interface specification is fulfilled - conflicts do not appear. Modules
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can be replaced by other modules with the same interface without any issues. The
error correction in one module does not entail any changes in other modules.

Furthermore, well-designed modules are reusable. Modules for common tasks, such
as user authentication, can be used in multiple software projects. But a modu-
lar design does not automatically contain independent and reusable components.
Each dependency of a component reduces it’s reusability. In general, components
should have high cohesion, that is all parts of one component belong together[12].
In contrast, the coupling between different components should be loose[12], that
is components should have as less dependencies as possible. These two conditions
develop the component’s reusability to the maximum.

Number of modules

C
os

t 
or

 e
ff
or

t

Cost per module

Cost to integrate

Total software cost

{ 
Region of 

minimal cost

Figure 2.1 Module trade-off according to Pressman[39].

The drawback of a modular design is the introduced overhead due to the encapsu-
lation of functionality. Modules need to be integrated and connected to offer the
system functionality. The module integration, including module identification and
interface specification, causes additional effort that does not occur without modular-
ity. Furthermore, there is a trade-off regarding the optimal number of modules - that
is the number of modules with minimal total costs. The more modules the lower the
complexity per module, but the higher the integration effort. Figure 2.1 shows this
trade-off. The total effort is the sum of the module costs plus the integration costs.
In theory, there is a region with minimal costs. The number of modules defined in a
modular design should be in the region of minimal cost, but there is no automatism
for finding the optimal number of modules. Rather, experience in designing software
yields to a good modular design.

2.1.4 Design Patterns

In each domain with modelling challenges, repetitively occurring problems exist.
The original definition of Design Pattern is from Christopher Alexander and related
to the architecture of buildings and towns[5]. Alexander describes design patterns
as general solution to repetitive occurring problems. Software engineers use design
patterns in the same way - to describe frequently appearing problems and their
solutions in software design. Using design patterns supports software engineers in
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finding reusable and understandable solutions[20]. With patterns a design can be
described elegantly, because patterns abstract realization details. Furthermore, de-
sign patterns catalog the expertise of software designers. One can find an approved
solution for a common problem in design pattern collections. Gamma et al. have
defined various patterns for object-oriented designs on an abstract level[20]. This
collection groups design patterns according their purpose in three categories: cre-
ational, structural or behavioral. While creational patterns address object generation
problems, structural patterns deal with object composition and structural patterns
apply to component interaction.

Due to the generality of these design patterns, they are also applicable for other,
not object-oriented implementations. In the subsequent sections we describe de-
sign patterns that are used in this thesis. Our descriptions correspond rather to
procedural-style than to object-oriented implementations.

2.1.4.1 Adapter Pattern

The adapter pattern is a structural pattern. It is used to enable the interaction of
two components with incompatible interfaces. That is, one component (the client)
needs to execute functionality from another one (the adaptee), but the interfaces
of the two components do not match. By creating an adapter for the adaptee, its
functionality can be used. In order to execute the designated functionality, the client
executes operations of the adapter. The adapter then calls the specific functions of
the adaptee. A simple example for the application of the adapter pattern are so-
called wrapper functions. If the signature of a function is not adequate in the current
context, a slim wrapper function, with an adequate signature, is built around the
needed function.

2.1.4.2 Command Pattern

In software systems with multiple components, these components need to interact
to provide the complete system functionality. One component (the invoker) may
perform requests on another component (the receiver). In a naive implementation,
these requests were direct function calls. But these direct connections cause coupling
between components and hence a single component is less reusable and less flexi-
ble. Furthermore, the request’s properties and the receiver might not be known in
advance. Therefore, direct function calls are not applicable. The command pattern
provides a better solution by decoupling invoker and receiver. All possible receivers
share a general request structure - for instance, the same function signature. Thus,
the invoker can abstract concrete requests and handle with general instances. During
runtime the general instances are filled with concrete requests.

2.1.4.3 Publish/Subscribe Pattern

As the command pattern, the publish/subscribe is a behavioral pattern. The pub-
lish/subscribe (also known as observer pattern) is used to define dependencies be-
tween multiple components and notify all interested components about state changes.
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Figure 2.2 Example for the publish/subscribe pattern, according to Gamma et
al.[20]

For instance, Figure 2.2 illustrates a common scenario: multiple views, such as table
and chart, represent the same data. If the data changes, the views must be updated,
too. In order to ensure the update of dependent components, the publish/subscribe
paradigm can be used. All dependent entities (different views) subscribe to an event
(change of data). Every time this event occurs, all subscribers are notified and the
data of interest is published.

The publish/subscribe concept decouples the considered components on the source
code level. Dependencies are not listed in the source code of the required compo-
nent. Instead the dependent component registers to the required one. Removing the
dependent component, does not enforce any other changes. Therefore, the commu-
nicating components do not need to be known in advance.

2.2 Protocols

A (network) protocol defines syntax and semantics for communication in computer
networks. Generally, network protocols are organized in layered architectures like
the Open System Interconnection (OSI) Reference Model[23] or the Internet Protocol
Suite[8] (also TCP/IP).

2.2.1 OSI Reference Model

The Open System Interconnection (OSI) Reference Model is an abstract model for
communication in computer networks[23]. It defines seven layers and their tasks in
the communication process. The concrete protocols are not part of the specification
- they are defined in separate documents.

The most characteristic attribute of the OSI reference model is its strict layering.
Figure 2.3 shows the seven layers of the model. Each layer provides a service to the
next higher one; and is serviced from the next lower layer. There is no communication
besides this service architecture. One layer encapsulates a specific functionality and
has to perform its tasks for the layer above it. Due to this strict encapsulation, a
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Figure 2.3 The OSI Reference Model

service implementation (a protocol) can be replaced with another one, with the same
services. Therefore, the OSI reference model allows flexibility regarding the service
implementation.

The two lowest layers, that is the physical and data link layers, abstract physical
circumstances and offer data transfer between network entities for layer 3. The net-
work layer enables multi-hop connections and connections between different network
types. Therefore, it uses a structured addressing scheme (for instance IP addresses).
Layer 3 fragments packets to frames and reassembles frames to packets, if necessary.
Furthermore, the network layer performs routing based on its addressing scheme.

The transport layer provides data transfer from end-point to end-point. That is, it
connects two processes on different hosts. Layer 5 - the session layer - has the task
to provide authentication and permission checks for an layer 4 connection between
processes. The presentation layer abstracts syntactical differences (for instance dif-
ferent encoding). The application layer contains all programs, that communicate
over a network connection. In practice, there is no distinction between layers 5 - 7,
each application implements instead the functionality of these layers.

As depicted in Figure 2.3, only the lowest three layers need to be implemented in the
network infrastructure (including hubs, switches and routers). End-hosts (including
PCs and smartphones) have to implement the entire protocol stack.

2.2.2 Transmission Control Protocol

The Transmission Control Protocol (TCP)[8] is a network protocol on the transport
layer. TCP offers reliable and ordered delivery - that is TCP assures that all packets
arrive at the destination in the designated order. Many internet applications includ-
ing worldwide web, e-mail and file transfer use TCP for data transmission. Before
transferring data, the hosts perform a three way handshake to negotiate the con-
nection parameters, such as the initial sequence numbers. Afterwards, a full-duplex
connection is established - data can be transfered in both directions simultaneously
on top of a single TCP connection.
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2.2.2.1 TCP Header Format

TCP transfer units are called segments. Each segment contains a header and a
data section. Figure 2.4 shows the TCP header format. The data section of a TCP
segment contains the payload data from the application.

Source Port Destination Port

0 8 16 24 32
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Data
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Figure 2.4 TCP header format

TCP uses a fixed set of control bits (marked dark-grey in Figure 2.4) to negotiate and
maintain connection settings. In consequence, the header structure (syntax of the
protocol) is inflexible. Therefore, the possibility to modify the protocol behaviour
(semantic), using this header structure, is limited.

In theory, TCP can be extended using header options (marked light-grey in Figure
2.4). Options are type-length-value encoded: they consist of a fixed-length type field,
a fixed-length field representing the length and a value field with variable length.
This structure is highly flexible, because options may have variable length and their
types are not predetermined. Furthermore, unknown options can be skipped and the
rest of the packet can be parsed, because the length of each option is known. TCP
options can be used for transfering further control data from one host to another.
However, the original TCP specification defined only three options, of which two
were needed for option handling[38]. Therefore, only one option (maximum segment
size) could be used to transfer control information. Hence, the flexibility through
TCP options is not used consequently.

2.2.2.2 History of TCP

The first specification of TCP was published in 1974[9]. Notably, the layered pro-
tocol architecture was added in 1981. The transportation functionality was split
into TCP[38] and the Internet Protocol (IP)[37]. This fundamental modification
entailed an almost complete re-implementation of existing TCP applications. Re-
gardless of this incident, successive implementations of TCP were monolithic, too.
With enlargement of the network sizes, performance problems occurred in TCP/IP
networks. In particular, network congestion decreased the performance. Therefore, a
discussion on congestion control and avoidance started in 1984[32]. During the sub-
sequent years, TCP has encountered numerous improvements. Several algorithms
like TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery
were developed and standardized[8]. Again existing TCP implementations had to
be changed radically. However, the development of new congestion avoidance mech-
anisms is still object of research[13][6]. So, new mechanisms will occur and must be
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integrated into existing TCP implementations. Such an integration is a significant
software modification and therefore very complex.

The example of TCP shows that protocols can have a very long lifetime, but never-
theless substantial protocol characteristics may change. This property of protocols
should be considered in a protocol implementation design and will be examined in
our problem analysis (see Chapter 4).

2.2.3 Host Identity Protocol

The Host Identity Protocol (HIP)[31] is a signaling protocol that provides end-
host mobility and security mechanisms such as secure key exchange. The HIP
architecture[30] has a highly extensible design. The HIP base specification[31] de-
fines packet and parameter format as well as the basic functionality (see Section
2.2.3.4). Further HIP-related specifications, so called extensions, define additional
functionalities (see Section 2.2.3.6). Extensions may define new use cases for ex-
isting packet types or parameters. In addition, extensions can define new packet
and parameter types. Therefore, the functionality of HIP can be liberally increased.
This extensibility is a key characteristic of HIP.

Two end-hosts communicating through HIP, establish a HIP association. A HIP
association can be considered as signalling channel between these two hosts. Within
this signalling channel, secure key exchanges are possible - even over insecure chan-
nels, such as public wireless networks. Payload data is not transfered through the
HIP association. Instead an existing end-to-end security protocol is used for encryp-
tion of payload data. A common scenario is to create secret keying material with
HIP and transfer payload data with IPsec and Encapsulating Security Payload [24].

2.2.3.1 HIP Namespace and HIP Layer

HIP was developed to resolve the weaknesses of contemporary TCP/IP networks[30].
Classical TCP/IP networks, such as the early Internet, were developed for stationary
clients. The network participants use IP addresses for identification (each network
interface should have a unique IP address) and localization (hierarchical routing
based on IP address prefix). The increasing mobility of network clients causes issues
with the dual usage of IP addresses. When a client changes his point of network
attachment from one network to another, he necessarily gets a new IP address to
adhere the routing scheme. This assures the correct localization of the client. But,
because of the IP address change, the identity of the mobile client changes simul-
taneously. As a result, connected hosts cannot verify the new identity, without
further ado. Opened connections that were bound to the previous IP address, will
be disrupted. A new connection establishment is necessary.

Additionally, classical TCP/IP networks have no authentication mechanism on the
transport layer, or below. Therefore these networks are susceptible for IP address
spoofing and impersonation attacks. These attacks are based on the possibility to
send messages with IP addresses that belong to another host. To counteract such
vulnerabilities, authentication and encryption must be implemented in applications.
The downside of this approach is that each application needs to implement the
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security features on its own. In contrast, connection-related security features could
be used by multiple applications without additional effort.

In order to eliminate the dual usage of IP addresses, HIP introduces a new crypto-
graphic namespace for the identification and authentication of other network par-
ticipants. Each communication partner has at least one unique Host Identity (HI),
that is a self-generated public and private key-pair. Using the HI, each other HIP-
enabled host can be identified and authenticated. Today’s applications usually use
IP addresses for identification and are not HI capable. Therefore, HIP defines Host
Identity Tags (HIT) and Local Scope Identifiers (LSI). HITs are compatible with
IPv6 addresses and hence many applications can use them immediately. Legacy
applications without IPv6 support (and therefore without HIT support), use LSIs.
LSIs are compatible with IPv4 addresses. Provided with the new HIP namespace,
the dual usage of IP addresses can be avoided. Applications on upper layers use
the new HIP identifiers. The underlying networks continue using IP addresses for
localization and routing.
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Figure 2.5 HIP in the network stack

The required mapping from HIT/LSI to IP addresses is done on a new protocol layer.
This layer serves as indirection point and decouples network and transport layers,
as depicted in Figure 2.5. Through this decoupling, end-host mobility becomes
possible. IP addresses may change, but the connection, which is bound to the
HIT/LSI, remains.

2.2.3.2 HIP Packet Format

Figure 2.6 shows the HIP packet format that is common to all HIP control messages.
Each packet must contain several control information (including version, checksum
and controls fields) beside the sender’s and receiver’s HIT. HIP parameters are op-
tional and have variable length. The different control message types are encoded in
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Next Header Packet Type

0 8 16 24 32

Checksum

HIP Parameters

Padding

Header Length

Sender's HIT (128 bit)

Receiver's HIT (128 bit)

Controls

Version RES. 10

Figure 2.6 HIP packet format

the 7-bit packet type parameter (marked dark-grey in Figure 2.6). Flexibility was
one of the main design goals for the HIP packet format. This can be seen in the
variability of packet type and parameter fields and due to their flexibility, HIP is
greatly extensible. Extensions may define additional packet types and so enlarge
the functionality of HIP. However, a HIP implementation must drop control mes-
sages with unknown packet types. This allows interoperability between protocol
implementations with different feature sets.

2.2.3.3 HIP Parameter Format

Type Length

Contents

C

Padding

0 8 16 24 32

Figure 2.7 HIP parameter format

HIP parameters are type-length-value encoded and have to occur in ascending order
of their type in HIP control packets. The last bit of the type code (C, also critical
bit) denotes whether the parameter must be recognized by the recipient or not. For
this reason, critical parameters have odd values and optional parameters have even
values. The critical bit facilitates backward compatibility. A HIP implementation
that does not understand a non-critical parameter can ignore it, this is because the
type-length-value encoding allows to ignore one parameter and continue parsing the
remaining packet. Using non-critical parameters, HIP hosts negotiate the feature
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set for a HIP connection. Due to the flexibility of type-length-value encoding, HIP
parameters can be used for numerous different purposes. Just like packet types, HIP
extensions may define new parameter types.

2.2.3.4 HIP Base Exchange

HIP connections are established using a four way handshake - called the HIP base
exchange[31] (BEX). The BEX is depicted in Figure 2.8 and contains an authenti-
cated Diffie-Hellman key exchange[10]. The initiator starts the BEX by sending a
minimal I1 packet, without additional parameters, containing its and the receiver’s
HIT. The responder answers with a signed R1 packet that contains his HI, a public
Diffie-Hellman key and a puzzle challenge that the initiator must solve. The puzzle
challenge is a number I, chosen by the responder. The initiator chooses a number J
and computes the hash value of the concatenation I, HITs, and J. The challenge is
solved, if the resulting hash value has zeros at the lowest order K bits. The parame-
ter K is also chosen by the responder and denotes the puzzle difficulty. The higher K
is, the more computing power is needed for solving the puzzle. The initiator sends
the solution - the number J - together with his public Diffie-Hellman key in the
signed I2 packet to the responder. The responder verifies the solution by performing
the hash computation. If the puzzle solution is correct, the responder completes the
BEX by sending an R2 packet with his signature. Due to the puzzle challenge, a
potential attacker has to invest more computation power than the responder. The
puzzle mechanism is necessary to avoid malicious hosts attacking hosts using the
cryptography. After a successful BEX, the participating hosts are mutually authen-
ticated and have generated secret keying material that can be used for encryption
of payload data.

Initiator Responder

I1: trigger exchange 

R1: puzzle, D-H, key, sig

I2: solution, D-H, (key), sig

R2: signature

select precomputed R1

remain stateless

check puzzle

check signature (sig)

compute Diffie-Hellman (D-H)

check signature

solve puzzle

check sig

compute D-H 

Figure 2.8 HIP base exchange

Beside authentication and key exchange, the BEX can be used for additional features.
In which case, the used control packets may contain additional parameters. HIP
extensions can define syntax and semantic of these parameters. Thus, the BEX is a
multi-purpose operation.
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2.2.3.5 Other HIP Control Packets

Two hosts use the HIP base exchange, consisting of I1, R1, I2, R2 packets, for
connection establishment. In addition, HIP specifies further control packets - for
instance, to maintain or close a connection[31].

UPDATE Packet

HIP UPDATE packets can be used for updating of connection parameters. There are
several reasons for sending an UPDATE packet, including rekeying, creating of new
security associations and mobility management (information about an IP address
change). Authenticity and data integration are secured in UPDATE packets to
avoid connection hijacking. In addition, sequence and acknowledgement numbers
are used to enable reliable transmission.

NOTIFY Packet

HIP specifies NOTIFY packets for information purpose. Protocol or negotiation
errors can be reported using NOTIFY packets. The implementation of NOTIFY
packet handling is optional.

CLOSE Packet

HIP connections are teared down using CLOSE and CLOSE ACK messages. The
host wanting to close the connection sends a CLOSE packet. This packet is also
protected against data manipulation and eavesdropping. The corresponding host
confirms the connection termination by sending an equally protected CLOSE ACK
packet. Afterwards both hosts can remove the connection state.

2.2.3.6 End-Host Mobility with HIP

One actively used extension for HIP is End-Host Mobility and Multihoming with the
Host Identity Protocol [33]. This extension enables address changes for established
HIP associations (end-host mobility) and the possibility to hold multiple addresses
per host (multihoming). Therefore, the term locator is introduced. Locator denotes
a name for one or more network addresses (points of network attachment). In ad-
dition, LOCATOR is a new HIP parameter type that contains zero or more locator
fields[33]. This new parameter type is transfered using UPDATE packets. The main
objective of the mobility and multihoming extension is to inform associated hosts
about new or changed locators. This feature allows a mobile host to change its
point of network attachment without losing its transport layer connections. Layer
4 connections exclusively use HITs or LSIs for addressing. Therefore, the IP ad-
dress change on layer 3 is opaque for transport layer connections. Instead, the HIP
implementation changes the mapping between HIT/LSI and IP address.

In the simplest mobility case, one host changes its point of network attachment and
rekeying is not performed. Figure 2.9 shows this procedure consisting of three steps.
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Mobile Host Peer Host

UPDATE (ESP INFO, LOCATOR, SEQ) 

UPDATE (ESP INFO, SEQ, ACK, ECHO REQUEST)

UPDATE (ACK, ECHO RESPONSE)

Figure 2.9 Mobility

Firstly, the mobile host informs the peer host about his new locator. In this simple
case, the ESP INFO field does not contain new information. The peer host answers
with an ECHO REQUEST that is send to the new locator. Finally, the mobile host
confirms its new address by sending the ECHO RESPONSE. Sequence numbers
(SEQ) and acknowledgments (ACK) make sure that all messages are received and
the information is up to date.

The end-host mobility and multihoming extension proves the extensibility of HIP.
The new parameter type LOCATOR is transfered using the existent packet type
UPDATE. Furthermore, the extension specifies the semantics of the new parameter
- that is how to handle LOCATOR parameters. HIP implementations without the
end-host mobility and multihoming extension can ignore the LOCATOR parameters
in received UPDATE packets. In this way, backward compatibility is warranted.
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Related Work

In this chapter we present other approaches that share various aspects of our work,
such as software modularity or the usage of design patterns. Firstly, we introduce
approaches on modular protocol stacks that also apply the software modularity con-
cept to protocol implementations - but at a more abstract level than in our approach.
These approaches are presented in Section 3.1. Later, we present studies on soft-
ware re-engineering. The presented work concerns design patterns, as well as our
approach, but in a different domain. However, we present the results as indication for
our work in Section 3.2. Finally, in Section 3.3, we introduce practical programming
frameworks that may be used for realizing modular networking software.

3.1 Modular Protocol Stacks

The layered architecture of network protocol stacks is a well-established structure.
The durability of this design is based on its flexibility with regards to protocol im-
plementation. Each protocol on any layer can be replaced by another one, providing
the same interfaces to the adjacent layers. However, one drawback of the strict
layering is the isolation of each layer. Independent protocol implementations may
realize similar functionalities redundantly. Thus, reusability potentials may not be
utilized. Furthermore, a protocol instance can only interact with adjacent protocols.
Thus, valuable communication between two non-adjacent layers is prohibited. For
instance, TCP retransmissions could be reduced if the physical layer informs the
transport layer about network disconnections.

In contrast to our work, modular protocol stack approaches do not aim to improve
a specific protocol implementation, but to improve the entire protocol stack. Both
approaches utilize similar concepts, including software modularity and design pat-
terns. The key idea of modular protocol stacks is to resolve the strict layering and
implement the overall protocol stack functionality in a modular fashion. Therefore,
these approaches design reusable components and implement the entire protocol
stack functionality in one modular software system.
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3.1.1 Conduits+

Conduits+ is an object-oriented framework for network protocol software[21]. Its
goal is to provide protocol independent, reusable software components for network
protocol implementations. These building blocks are called conduits and realize the
protocol logic. In contrast, information chunks represent the processed information,
such as packet data. Conduits+ defines four abstract building blocks: mux, proto-
col, conduit factory and adapter. A mux connects multiple other conduits and (de-)
multiplexes information chunks based on the respective addressing scheme. Proto-
col conduits provide the actual protocol functionality by producing, consuming and
verifying information chunks. Furthermore, protocol conduits store the current com-
munication state. existing ones. In contrast, adapter conduits connect the protocol
stack with the Conduit factories are used for creating new conduits and connect-
ing them to environment - that is the underlying hardware and the applications
on top. Since implementations using Conduits+ aim to provide the entire protocol
stack functionality, the hardware and the application adapter are the only external
interfaces.

adapter

mux

protocolprotocolconduit factory

adapter

information chunk

information chunk

mux

Figure 3.1 A typical Conduits+ structure according to [21]

In order to achieve the desired functionality, multiple conduits are interconnected.
The resulting system processes protocol data in the form of information chunks and
performs the designated activities. Figure 3.1 shows a typical system consisting of
multiple conduits. As mentioned above the adapter conduits act as interface to the
environment. While the lower adapter in Figure 3.1 could be an Ethernet conduit
that operates hardware, the upper one could be a network socket that can be used
by applications. The other conduits implement protocol specific logic. Both mux
conduits are responsible for (de-) multiplexing the processed information chunks
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from and to the various protocol instances. Each protocol instance manages one
connection. If an information chunk without matching protocol instance is received,
the respective mux informs the conduit factory, which can create a new protocol
instance if necessary. For instance, a Conduits+ TCP layer implementation could
have the structure depicted in Figure 3.1.

Conduits+ provides generic classes for protocol specific functionalities - that are ab-
stract conduits. Early versions of the framework enforced the usage of inheritance in
order to implement the designated protocol functionality. The general protocol class
must be specialized by a concrete class fulfilling the protocol needs. For this reason,
developers must know about the concrete framework implementation, which causes
additional effort. This issue was solved by the application of design patterns, such
as adapter and command[21]. Hence, the reusability of all framework components
was increased and the usage of inheritance reduced to a minimum.

Conduits+ is implemented in C++ and therefore restricted to platforms for that
a C++ compiler exists. The framework has been used for implementation of a
TCP/IP stack and a multi-protocol Asynchronous Transfer Mode access switch.
These implementations prove the practical usability of Conduits+. In our opinion,
the framework brings the most benefits when the entire protocol stack is implemented
using conduits, seeing as general building blocks can be reused in multiple protocols.

3.1.2 Protocol Factory

Another approach to modular protocol stacks is Protocol Factory [28] (ProFab). Pro-
Fab consists of two main parts: a generic protocol library and a virtual platform for
hardware abstraction. The objective of ProFab is to enable reuse in two dimensions.
Firstly, across platforms by introducing the a hardware abstraction layer. Secondly,
across protocol layers by identifying modular building blocks that can be utilized in
multiple implementations.

Generally, protocols are first verified using simulators with specific characteristics,
such as special programming concepts or languages. The source code generated for
simulations cannot be reused directly for implementing the end-system protocols.
The end-system implementation must instead start from scratch or the simulator
code must be ported. Using ProFab’s virtual platform, developers can build proto-
cols for multiple platforms including simulation environments, testbeds and classical
operating systems - with the same code base. This directly improves the devel-
opment process of protocols: Firstly, protocol design and implementation can be
verified using simulations and testbeds. This phase could contain several iterations
of design, implementation and tests. If the results are satisfying, the same code can
be used to build binaries for numerous operating systems including Linux, Windows
XP / CE / Mobile, network simulators, testbeds and sensor nodes.

ProFab’s generic protocol library has similarities to the Conduits+ framework for
network protocol software. Both approaches utilize the same concept of software
modularity in order to enable software reuse, but on different abstraction levels.
ProFab identifies invariants that can be used in multiple protocols. Invariants are
building blocks with a dedicated functionality. While Conduits+ specifies four ab-
stract types for its building blocks, ProFab offers a higher flexibility on a more
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fine-grained level. ProFab does not limit the type of invariants. Instead all common
functionality among different protocols may be identified and realized as invariant.
An implementation of an invariant should be as general as possible. For instance,
check-summing is required by multiple protocols on different layers. Therefore, it is
implemented as invariant and can be used multiple times. Each protocol that needs
to compute or compare checksums, can use this one implementation. Well-defined
invariants enable reusability across protocols and network layers and hence simplify
protocol development.

Besides software reuse, ProFab enables dynamic inside the protocol stack. Required
protocol functionality can be loaded and connected on demand. This allows the
realization of different functionalities for multiple connections. For instance, a TCP
implementation could apply different congestion avoidance algorithms for multiple
TCP connections by loading different invariants for this task. This dynamic is
achieved at the expense of performance loss. The dynamic loading causes additional
effort compared to static approaches.

ProFab extends the standard C syntax by adding constructs for module implementa-
tion and composition. Hence, ProFab enables developers to build modular protocol
software in C. However, ProFab does not introduce a new programming language,
instead ProFab uses a pre-compiler for the generation of plain C code. Thus, the
generated protocols can be used on all platforms that provide a C compiler and were
added to ProFab’s virtual platform. Furthermore, the ProFab compiler significantly
reduces the overhead introduced by the dynamic loading of protocol functionality.
This is done by identifying dynamic functionalities that can be inlined and inte-
grating these into a single building block or by replacing function pointers by direct
calls.

Overall ProFab simplifies the protocol development by reducing the complexity of
protocol stacks and enabling reuse of building blocks. The virtual platform for
hardware abstraction allows deployment and evaluation on many different platforms.

3.2 Software Re-engineering

The functionality of software does not change, until its implementation is modified.
Therefore, software does not abrade in the classical sense. But, environments soft-
ware is commonly used in change. In this case, the software in question becomes
less usable. In order to counter this software aging process, software can be mod-
ified. Most likely, these functional modifications were not considered during the
initial design. Therefore, the current implementation does not map the original de-
sign. This fact complicates the software maintenance and this kind of software is
called legacy software. Thus, software re-engineering might be necessary in order
to increase the software’s maintainability. Software re-engineering includes all ac-
tivities to make software more understandable or changeable[39]. In general, the
first step of re-engineering is the analysis of the current implementation in order
to create an abstract design. Afterwards, the design can be changed to fulfill the
new requirements. Finally, the new design is implemented using current software
approaches. Software re-engineering with the application of modularity and thus the
goal to create modular software, is called modularization.
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Verma and Liu[43] published a case study on software re-engineering with the focus
on application of design patterns. Although their work is related to software for
mesh generation, the results of the case study are of interest for our thesis. Verma
and Liu motivate software re-engineering by presenting the disadvantages of legacy
software. Besides the hindered maintenance, they identify the absence of abstraction
as a main drawback, because abstraction could reduce the system’s complexity to
the developer. Furthermore, the study names conditional statements, such as if-

then-else or switch, as indicators for inflexible source code. Since static constructs
offer only a fixed set of alternatives, their extension requires significant effort.

The case study points out that the application of design patterns increases flexibility,
extensibility and understandability of a software system. In particular, Verma and
Liu say that the usage of design patterns entails modularization and hence the
resulting software is easier to extend. Regarding the performance of the modified
system, the study provides only vague statements. It states that the performance
degradation should be acceptable to users. Overall, the study concludes that the
effort for the application of design patterns is exceeded by the quality improvement
of the resulting system in their scenario.

3.3 Programming Frameworks

In practice, more and more programming frameworks for different domains appear.
Generally, frameworks reduce the development effort by providing reusable build-
ing blocks. This section introduces frameworks that may be used for realization
of modular networking software. Firstly, we present a general plug-in framework,
called C-Pluff [29]. This framework can be used to build software that allows the
dynamic loading of functionality in form of plug-ins. Secondly, we introduce the
event notification library libevent [40]. The library provides the possibility to reg-
ister callback functions to events and performs the designated functionalities when
the event occurs.

3.3.1 C-Pluff

C-Pluff is a framework for realizing plug-in based software using the C programming
language[29]. The objective of C-Pluff is to provide services for accessing and man-
aging plug-ins. The framework defines how the main program and plug-ins interact.
Programs implemented with C-Pluff typically consist of a thin main program and
multiple plug-ins. The main program controls the plug-in framework and is respon-
sible for the initialization and setup of the framework. Plug-ins may be loaded or
unloaded during runtime, without restarting application or framework. Notably, the
most application logic is found in plug-ins; allowing a high degree of flexibility. So-
called extension points are the counterpart of plug-ins and define how main program
and plug-ins may be extended. Thus, the extensibility is not limited.

Figure 3.2 shows the structure of programs based on C-Pluff. Plug-ins are connected
using the framework functionality and can extend the system functionality at mul-
tiple extension points. The main program controls the framework, but does not
provide the main application logic.
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plug-in X
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plug-in Y

main program
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Figure 3.2 Structure of C-Pluff-based software according to [29]

In C-Pluff, a plug-in consists of a plug-in descriptor, a runtime library and static
data. The plug-in descriptor provides meta information for the plug-in, such as the
plug-in name and its static dependencies. The runtime library is a shared library
containing all program logic provided by the plug-in. Each plug-in can provide static
data to other plug-ins in form of data files. C-Pluff provides the functionality to load
plug-ins during runtime. For that purpose the plug-in runtime libraries are dynam-
ically linked when the plug-in is started, or unloaded when the plug-in is stopped.
Hence, plug-ins can be developed, distributed and deployed independently. In order
to represent complex relations, plug-ins may depend on other plug-ins. C-Pluff was
designed to manage these dependencies, providing functionality to automatically
load required plug-ins if applicable.

C-Pluff is completely implemented in C and currently available for Linux and Win-
dows. The framework was created by a single developer and is only marginally
maintained. The last release was three years ago[29].

3.3.2 Libevent

Libevent is an asynchronous event notification library for network software[40]. Typ-
ical network software, such as a http-server, has to handle multiple connections and
hence creates multiple network sockets. Thus, a classical implementation manages
multiple file descriptors - one for each socket. In order to observe incoming requests,
the software periodically polls all file descriptors. Usually this is done in an infinite
loop and the file descriptors are checked in sequence. If the program has to take
action on one descriptor, this is done immediately. Therefore, the handling of subse-
quent file descriptors is delayed until the former activities are finished. This scenario
might result in low performance, due to the blocking activities.

Libevent provides another approach. All needed file descriptors are registered to
libevent under specification of callback functions. Whenever a file descriptor requires
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activity, libevent executes the registered callback function. This handling is done
asynchronous - that is the main program must not wait until the callback function
has finished its activity. While another thread performs the desired actions, the
main program can continue with polling the other file descriptors. Thus, libevent
can be used to replace the classical event loops and hence increases the scalability
of network software.

Since libevent allows the dynamic addition and removal of file descriptors, the flex-
ibility of the resulting program is increased too. Furthermore, libevent can execute
a designated functionality after a timeout has been reached or when the program
receives a specific signal.

Libevent provides an application of the publish/subscribe pattern in the context
of file descriptors, timeouts and signals. With regards to protocol implementa-
tions, libevent can be used to create a flexible packet handling mechanism. The
library is implemented in C and available for Linux, *BSD, Mac OS X, Solaris and
Windows[40].
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4
Problem Analysis

This chapter precisely describes the challenges connected with protocol implementa-
tions and in particular, regarding adaptable and flexible protocols. Firstly, Section
4.1 highlights the characteristics of adaptable and flexible protocols. Secondly, Sec-
tion 4.2 analyses the drawbacks of monolithic protocol implementations. Finally, we
describe the problem statement in Section 4.3.

4.1 Adaptable and Flexible Protocols

If your protocol is successful, it will eventually be used for purposes for
which it was never intended, and its users will criticize you for being
shortsighted. (Charlie Kaufman, [36])

Due to the fast and unpredictable evolution of computer networks and the applica-
tions on top of them, the protocols used must be sophisticated. Backward compati-
bility is a well-established requirement for new protocols and simplifies the protocol
integration into existing networks. Besides this, extensibility and hence forward
compatibility is becoming an important design goal for protocol specifications. At
the time of specification, not all use cases for a protocol might have been known,
making the need for changes to the protocol behaviour to be very likely. As a result,
specifications of numerous new protocols are highly flexible. A common example is
the need for exchangeability of cryptographic algorithms. The defined algorithms
may become outdated due to security vulnerabilities. Then an additional specifi-
cation defines the usage of a different algorithm. For instance, HIP defines RSA
and DSA as obligatory, cryptographic algorithms[31]. However, it is intended to use
newer algorithms in future specifications, because the present algorithms may be-
come outdated. Therefore, the used algorithms inside a HIP implementation should
be exchangeable with as less effort as possible.
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4.2 Issues of Monolithic Protocol Implementations

Due to the characteristics of adaptable and flexible protocols, monolithic implemen-
tations of these protocols do not make sense. Subsequently, we present the main
drawbacks caused by monolithic protocol implementations.

4.2.1 Source Code Dependencies

The examples of TCP and HIP show that protocol implementations need to be
changed over time. Either because the specification was revised or because the
protocol specification is flexible and extensible per se. In the case of a monolithic
protocol implementation, these predictable modifications are extensive. The reason
can be found in the strong source code dependencies caused by the loose architec-
ture in monolithic software. Any statement in the code can depend on code at other
positions; without having criteria or explicit rules for these dependencies. A depen-
dency might be an expected variable modification. If this modification is missing,
the dependent code will behave unexpectedly. For instance, protocol state may be
modified at multiple positions. Code depending on one of these state modifications
cannot function anymore if the state modification is removed. But, in monolithic
software, there is no explicit reference between the related positions and a code mod-
ification can entail unexpected errors, making maintainability (see Section 2.1.1)
of monolithic protocol implementations is poor.

In addition, source code dependencies decrease the reusability of code. On the one
hand, monolithic functionality is hardly reusable inside a software project, due to
the lack of interfaces to it. On the other hand, usage of code blocks from monolithic
software in other projects requires the same conditions as in the original project
to be valid. Otherwise, significant modifications have to be done. In practice, this
results in a so called copy and paste approach: the needed code is copied from one
project and pasted into another. Afterwards the code is modified to fulfill the exact
requirements of the new project. This is code duplication and not reuse. Both
code bases must be maintained separately, because they are no longer identical.
In contrast, a well-defined component with an explicit interface could be used in
multiple projects, but needs to be maintained only once.

4.2.2 Implementation Complexity

Hosts use network protocols for interaction. Therefore, a defective protocol imple-
mentation on one host can impact other, unrelated hosts or the entire network. Thus,
protocol implementations must be error-free and conform exactly according to their
specifications. An incorrect HIP implementation, for instance, may cause security
vulnerabilities. Several HIP control packets are signature protected. It is essential
that the signature of a received packet is verified, before the further packet process-
ing is done. Otherwise the host would be highly vulnerable. The implementation
complexity of monolithic software provokes implementation errors. There are no
different abstraction levels in monolithic software and a developer has to understand
the entire architecture all at once. In big software projects, direct communication
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between developers might not be possible due to a separation in time and space.
Subsequent developers might not have knowledge about assumptions made by the
original developers. However, modifications require an exhaustive knowledge and a
vast mental model of the software. This knowledge is essential, because the loose
architecture of monolithic software does not point out these assumptions.

4.2.3 Reduced Portability

Beside classical personal computers also servers, middleboxes and smartphones par-
ticipate in today’s networks. Therefore, protocols must be implemented for more
and more platforms. The porting of a monolithic implementation to another plat-
form is extensive, because platform specific code might occur anywhere in the code
base. In contrast, a layered software architecture would increase the portability.
Hardware specific functionality can be realized on one layer and the protocol logic
on another, higher one. Porting to another platform only requires changes in the
hardware specific layer.

4.2.4 Organizational Issues

Like software development in general, protocol development becomes a more iter-
ative process. Regarding flexible protocols, first the basic functionality could be
implemented and tested. In a subsequent iteration additional extensions may be
defined, implemented and verified. Monolithic implementations are not qualified for
iterative processes, because of their poor maintainability.

Furthermore, the absence of components complicates the separation of responsibili-
ties between software developers or different organizations. Due to the wide-ranging
dependencies in monolithic software, the code base cannot be separated into multi-
ple, independent parts. A separation without considering the dependencies, would
also cause issues. Let us assume each developer is responsible for a specified part of
the code base. The work on one of these parts will entail changes in other parts of
the software. Hence, the responsible developer must be involved in order to perform
the modifications. This is an extensive organizational effort.

The usage of a version control system with the possibility to independently work
on the same code base in different branches, might be an approach to reduce this
problem. Each developer can perform the required modification in his branch. But
the synchronization of multiple branches will be very extensive.

4.3 Problem Statement

The loose architecture of monolithic software entails multiple issues. Namely, the
wide-ranging and implicit source code dependencies reduce maintainability and re-
usability of monolithic software. Furthermore, the complexity of monolithic protocol
implementations provokes implementation errors. Reduced portability and organiza-
tional issues complete the list of drawbacks for monolithic protocol implementations.
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These issues are not sustainable especially for adaptable and flexible protocols. Our
approach (see Chapter 5) explores the applicability of modular structures on the
design and implementation of adaptable and flexible protocols. In addition, we eval-
uate the application of design patterns in order to increase clearness and reusability
of the resulting software.
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Design

The problem statement in Section 4.3 shows that monolithic implementations of
adaptable and flexible protocols are not sustainable. Therefore, our design bases on
modular structures and approved design patterns. In particular, flexible protocols
specify mandatory and optional features. The key idea is to implement all mandatory
protocol functionality in a minimal program core. Optional features of a protocol
specification are realized in so-called extensions or modules. We will use these two
terms interchangeably. Each extension encapsulates a self-contained set of optional
features. In order to minimize dependencies between extensions and the program
core, all components are designed as self-contained building blocks. Interaction of
components is realized using the publish/subscribe and command design patterns.

This chapter consist of three sections. First, we define our design goals in Section
5.1. Afterwards, in Section 5.3, we describe how a modular protocol design can be
realized. Finally, we prove our modular design by applying it to HIP in Section 5.4.

5.1 Design Goals

Our problem analysis in Chapter 4 identifies multiple challenges regarding the design
and implementation of adaptable and flexible protocols. With the solution described
in this chapter, we aim to fulfill these challenges and hence achieve the following
design goals:

• Maintainability of the resulting software. Maintainability includes modifi-
ability and extensibility at the design and implementation levels as well as
testability of the runtime correctness. In particular, modifiability and extensi-
bility are important for the implementation of flexible protocols, because the
specification of these protocols might change frequently.

• Reusability of building-blocks. Reuse of self-contained components reduces
the implementation complexity and accelerates the development process. The
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functionality of existing components may be integrated, instead of imple-
mented from scratch. For this reason, we aim to design the needed functionality
in a reusable shape. The generated building-blocks should be reusable within
the same project and, if applicable, in other projects.

• Simplicity and Structuredness of the software project and source code.
Simplicity means that gratuitous complexity should be avoided. Therefore,
we do not aim to create an solution that contains unneeded features, but
one that fulfills our requirements. In addition, source code simplicity directly
reduces implementation errors, because developers understand the code faster.
Structuredness denotes the existence of responsibilities on the project level
and the separation of concerns on the source code level. The overall structure
must allow the simultaneous co-operation of multiple developers on different
extensions, without conflicts. Thus, we aim for a solution that allows indepent
development of different functionalities and enables their integration to the
overall system.

• Performance of the resulting application is an important attribute, because
protocol implementations with low performance also influence the performance
of dependent software. Meaning that, the performance of a modular protocol
implementation must not be significantly worse than the performance of a
monolithic implementation. This goal should also be fulfilled for embedded
devices with low computing power, such as routers or smartphones.

We present a design that considers these goals in this Section 5.3 and evaluate its
conformance in Chapter 7.

5.2 Applicability of Existing Approaches

Approaches like Conduits+ and ProFab (see Section 3.1) propose a modular con-
cept for entire protocol stacks. This enables a high potential for reuse and may
increase modifiability and extensibility of the protocol stack. The authors of both
frameworks, Conduits+[21] and ProFab[28], proved that the implementation of pro-
tocol software using their respective approaches improves the protocol development.
For instance, due to the reuse of existing components or the application of soft-
ware modularity. We agree that both frameworks improve the implementation of
network software from scratch - that is without existing code. But, considering a
situation with an existing implementation that should be re-engineered, the appli-
cation of both frameworks is challenging, because the frameworks strictly define the
software structure. Thus, the existing source code has to be transformed in order
to fulfill the framework’s structure. During this process, there are no stages with
functioning interim versions. Instead, the entire code base must be integrated into
the framework.

Furthermore, the mentioned frameworks also reduce flexibility at the implementa-
tion level, because they predetermine the software structure and hence the control
flow of the resulting program. This situation is not problematic, as long as the frame-
work structure maps the requirements exactly. But if framework structure and the
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actual protocol design diverge, this demands high effort to compensate. For this
reason, we argue that of adaptable and flexible protocols should not be implemented
using frameworks that predetermine the control flow, because the flexibility of the
considered protocols could conflict with the structural heaviness of frameworks. In
contrast to frameworks, software libraries provide independently usable functional-
ities. Developers may utilize only the actual needed features and hence decide on
using a subset of the functionality that is offered by the library.

We appreciate the mentioned solutions as being reasonable for the implementation
of the entire protocol stack functionality from scratch, but our problem corresponds
to a single protocol instance on one layer. So, our approach for modular protocol
implementations will not utilize the mentioned frameworks.

5.3 libmod - a Protocol Modularization Library

In this section we describe our concepts for modular protocol implementations.
Firstly, we examine the practicability of existing approaches to our problem. Af-
terwards, we give an overview of our solution before we explain our concept in
detail.

5.3.1 Architecture Overview

protocol on layer N-1

module X

module Y

protocol core

protocol on layer N

protocol on layer N+1

Figure 5.1 Modular protocol structure on layer N with interfaces to layer N + 1
and N − 1

Based on the above argumentation, we designed a modular architecture that re-
sides on a single layer. Figure 5.1 depicts the considered environment. We want
to create a modular solution for one protocol on a specific layer. As usual in lay-
ered protocol stacks, protocols on different layers communicate through the defined
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interfaces between their layers. Within the regarded protocol, the overall function-
ality is split into multiple components; namely protocol core and multiple modules.
Modules interact directly with the core and the protocol functionality is provided
by collaboration of protocol core and the modules. The ultimate design goal is to
minimize dependencies between each of these components. This directly facilitates
maintainability and reusability.

Adaptable and flexible protocols usually consist of mandatory and optional fea-
tures that are defined in multiple specifications. Our design subdivides the features
according to their obligation: Mandatory features, such as security checks, are im-
plemented in the protocol core and optional features, such as additional features for
individual cases, are encapsulated into modular extensions. Thereby, the minimal
coupling and maximal cohesion principle applies. Minimal coupling denotes that
each module should have as few external dependencies as possible. In contrast, all
features inside one module should be semantically related and may have internal
dependencies at the source code level.

module 1 module n

module preprocessing

function registry libmod

protocol core

module initialization
meta information

intialization data

specialization

state manager

packet handling routine

periodic maintenance

Figure 5.2 Design overview (for clarity reasons only module 1 is connected)

Each module should thereby be a self-contained building block that can be added
or removed to an existing protocol implementation without enforcing changes to the
protocol core. This is only feasible, if the protocol core does not know how many
or which modules exist. Therefore, we need a mechanism that integrates protocol
core and modules. The integration mechanisms will be encapsulated in a reusable
modularization library called libmod. This library provides general functionality
for modular protocol implementations, which may be specialized to fulfill the actual
needs. Figure 5.2 shows the involved components and their relationship. Modules
are connected to the protocol core using functionalities from libmod, the protocol
core as well as the modules depending on the modularization library.

Since modules may need to save state information that are not provided by the pro-
tocol core, they must be enabled to create own state variables. In order to realize
this feature without creating redundant functionality nor dependencies, we define
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a modular state mechanism. Protocol core and modules can use this mechanism
to register and manage their state information. As mentioned above, the core is
not aware of the existing modules, because we aim to create independent building
blocks. The protocol core can then not call any module functionality directly. In-
stead libmod provides a function registry that mediates between protocol core and
modules. The function registry is a general concept that allows the nomination of
functions, which are executed when a specified event occurs. In order to utilize this
concept, the core must specialize it. We propose three features that are based on the
function registry. These features are module initialization, packet handling routine
and periodic maintenance. In our opinion, these are the three fundamental parts,
which might be influenced by modules. Therefore, modules are enabled to register
their functionality.

With the program startup, the protocol core obtains exclusive control of the pro-
gram flow. Since the protocol core is not aware of the existing modules, it cannot
delegate the program flow to the modules and hence these could not register any
functionality. Therefore, we need a mechanism that enables modules to register their
functionality. We propose a module preprocessing routine that analyzes meta infor-
mation provided by the modules and makes the required information available to the
core. Furthermore, the preprocessing is responsible for checking the compatibility
of protocol core and existent modules.

After this first overview, the next sections provide detailed information about the
mentioned components.

5.3.2 Modular State

Especially protocols that perform a connection establishment save various associa-
tion state information, such as the used address pairs or connection timeouts. The
protocol core can manage this information for all mandatory functionalities. How-
ever, extensions may need to save additional information, such as optional connection
options, in the association state. The protocol core cannot manage the extensions’
state information, because that would entail dependencies between protocol core
and modules. Alternatively, each extension could create and maintain its own state
information set per host association. Then, the same functionality of creating and
updating data structures as well as look-up mechanisms would be implemented and
executed redundantly in core and modules.

For this reason, the data structure for storing the association state must be accessible
for the protocol core and the modules. We propose a modular state structure that
enables the core as well as extensions to add and modify state information in one
central database.

Figure 5.3 depicts the proposed structure. The state manager administrates the
association state. Protocol core and extensions can register new state items, that are
individual state data structures, during their respective initialization. In addition,
they are allowed to read and write the existing state entries. State items are clearly
identified by their unique ID - that is a string identifier. IDs are chosen by the
registrar (core or module) while needed to access state items. Further protection
against unauthorized read or write is not intended, because core and modules may
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state manager

libmod

data protocol core

data module X

data module Y

association state

module X

module Y

protocol core

Registration Read & Write

Figure 5.3 Modular association state structure

need to access data fields of other components. In this case a dependency between the
two components exists and the concerned functionalities must take this dependency
into account.

Due to the registration of state items, the state manager knows the structure of new
association state database entries. However, the state manager does not know how
to initialize the data structures for a new entry. Thus, each component that registers
a state item also provides an initialization command for this item. Hence, the state
manager can preallocate the state items with the desired data.

protocol coremodule X

register state item

new state entry 

state manager

init function

(provide item init function)

register state item

(provide item init function)

init function

Figure 5.4 Modular state initialization

As shown in Figure 5.4, modules provide a state initialization function when regis-
tering their state item. The state manager saves all state items and the respective
initialization functions. When the protocol core adds a new entry to the state associ-
ation database, state items are initialized with the registered function. This is again
an application of the command pattern. The state item initialization functions are
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requests in the terms of the command pattern. Modules and protocol core can be
considered as receivers and invoker.

5.3.3 Function Registry

Naturally, the protocol core defines the program flow during runtime. But the core
has no awareness about which or how many modules are existent nor how to execute
the functionality that resides in the modules. This blindness is necessary to avoid
dependencies between protocol core and modules, because otherwise semantically
independent components would be coupled at the implementation level. Therefore,
we need an alternate integration mechanism for the module functionality. That is,
the modules must be enabled to influence the control flow. For this purpose, libmod
provides an abstract function registration mechanism. Conceptually, the function
registry is an application of the publish/subscribe and command design patterns.

Each component (protocol core or modules) may subscribe to the function registry
by registration to an specified event. Every time a defined event occurs, all registered
components are sequentially notified and hence enabled to execute their desired func-
tionalities. This event notification service is a realization of the publish/subscribe
pattern. Additionally, it includes a command pattern structure. All registered func-
tionalities must conform to the same request type - that is they must fit to the same
interface. The component, which has registered the functionality, acts as receiver
and will perform the request, when it is invoked. This trigger ultimately originates
in the program core, which acts as invoker.

The function registry is a general concept for decoupling protocol core and modules.
In order to utilize this concept as concrete feature, it must be specialized. Our
design applies the function registry concept to multiple functionalities; including the
packet handling routine (Section 5.3.3.1) and periodic maintenance (Section 5.3.3.2).
Furthermore, the modular state initialization concept (see Section 5.3.2) could be
realized using the function registry.

The mentioned functionalities are protocol dependent and must implemented in the
protocol core. The next sections describe how these functionalities can be realized
using the generic function registry feature from libmod. Thus, the function registry
is a central element for the decoupling of protocol core and modules, because without
this mechanism, functionality that is implemented in modules could not be executed.

5.3.3.1 Protocol Packet Handling

A central aspect of each protocol implementation is the processing of received pack-
ets. This packet handling mechanism is responsible for the packet demultiplexing
- that is the mapping of received packets to the respective connection. The packet
demultiplexing mechanism triggers the further protocol functionality, based on the
received packet and the current connection state.

In particular regarding adaptable and flexible protocols, new functionality will be
added over time. For instance, new packet types and their handling could be de-
fined in additional specifications. Furthermore, the semantic of existing packet types
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might change. In order to avoid numerous, heavy modifications to the packet han-
dling routine, it should be as flexible as possible.

function callinformation transfer

core_handle_function()

protocol core

packet demultiplexing

handle_function_X()

module X
 

handle_function_Y()

module Y
 

handle function registry

libmod

Figure 5.5 Modular packet handling

Figure 5.5 shows the structure of our approach. Protocol core and modules can
register handle functions for a combination of packet type and current connection
state. Since protocol core and modules may register multiple handle functions for
one combination of packet type and connection state, the execution order must be
specified. Therefore, we use an absolute priority number to order handle functions:
the lower the priority number the earlier a handle function is executed. Priority
numbers are positive integers and mandatory for all handle functions.

Protocol core and modules register handle functions with the handle function reg-
istry, which is a specialization of the general function registry. Based on this infor-
mation, the packet demultiplexing routine executes the designated functions in the
required order. This method facilitates a flexible packet handling: extensions can
define handle functions for existing or new packet types without any modification in
the protocol core.

Furthermore, extensions may need to change the existing packet handling mecha-
nism. For instance, because a security functionality becomes obsolete. Thus, our
design offers the possibility to deregister handle functions. Using this feature, a
module can replace existing handle functionality by another one.

Regarded over time, the described process consist of two phases. Firstly, during
the initialization phase, protocol core and modules register their handle functions as
depicted in Figure 5.6. Secondly, each time the protocol core receives a packet, the
handle function registry executes the previously registered handle functions. The
execution order depends exclusively on the priority, with which the handles function
were registered.

Handle Function Priority Ranges

Since independent modules can register handle functions for the same combination of
packet type and connection state, a developer will not definitely know, which handle
functions exist for one parameter combination. Furthermore, some handle functions
must not be executed until a specific task is fulfilled. For instance, parameter parsing
should not be done until all security functions are finished. Thus, the developer
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protocol core handle function registry

packet handling of module X
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and connection state

packet demultiplexing

Figure 5.6 Modular packet handling over time

cannot determine reasonable priorities for new handle functions without further
information.

In order to support the developer in determining priorities and to ensure the correct
classification of handle functions, we divide the range of priority values in sections for
specific tasks, such as security checks, parameter parsing, internal state transitions,
generation of reply packets or transmission of reply packets. Notably, each phase
must be finished, before the next one starts. This strict sequencing is essential
for correct packet handling. If, for instance, the parameter parsing phase would
start before the security phase has finished, security vulnerabilities could occur.
Furthermore, one phase could influence the subsequent ones.

Usign predefined ranges for special purposes, each developer can classify the priority
of new handle functions. The definition of exact priority ranges is protocol specific
and hence we only describe the mechanism, but do not define real ranges.

5.3.3.2 Periodic Maintenance

Each protocol instance has to perform periodic activities, such as checks for retrans-
mission of packets or acting on timeouts. We denote these activities with periodic
maintenance. As protocol extensions can define new periodic activities, these must
be registered with the protocol core to enable their execution. For this task, we
again utilize the function registry mechanism. The protocol core defines an addi-
tional specialization of the function registry for this purpose. Hence, protocol core
and modules register their maintenance functionalities, which will be executed in
periodic intervals.
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5.3.4 Module Preprocessing

Since the protocol core is not aware of the existing modules, it cannot initiate the
registration of functionality that is implemented in modules. Thus, there is a need for
a mechanism that initially passes the control over the program flow to the modules.
Right at the protocol startup, during the protocol initialization phase, modules must
be allowed to register their functionality.

We propose a module preprocessing routine (in the following preprocessing) that
operates yet before the protocol initialization. The preprocessing analyzes meta in-
formation that each module must provide. Based on this analysis, dependencies of
existent modules are checked. While the protocol core has no awareness about mod-
ules, the preprocessing routine has an global view. Thus, the module preprocessing
provides information about the module initialization to the protocol core and hence,
the core can initialize the modules, which may register as many features as needed.

In order to take advantage of the flexibility of modular systems, the preprocessing
also provides a mechanism to select the modules that should be enabled and disabled.
For instance, if modules are defective or incompatible to other modules, they need
to be disabled. When the issue is resolved, the concerned module can be enabled
again.

5.3.4.1 Module Meta Information

Modules provide meta information in a predefined structure. We distinguish manda-
tory fields that must be present and optional fields that may be added to the meta
information. Each module must publish at least its name, version and informa-
tion about its initialization process (see Section 5.3.5). Additional data fields are
description, name of the developer, address for bug reports and webpage. The op-
tional data has informative character and will help other developers to get further
information. Furthermore, modules may have dependencies to other modules. These
dependencies are also listed in the module meta information.

5.3.4.2 Module Dependencies

A single module should have as few dependencies as possible. With the excep-
tion of libmod and protocol core functionality, an extension should not depend on
other building blocks. But there might be the situation, that dependencies are not
avoidable, because modules are built upon each other. In this case, the module
dependencies are explicitly listed in the module meta information. Thereby, the
preprocessing routine can analyze the dependencies and check if all dependencies
are fulfilled.

In general, we distinguish two dependency types: the requires-dependency and the
conflicts-dependency. A module X requires module Y , if X cannot function without
Y . For instance, a module providing user authentication could require a module pro-
viding cryptographic functionality, such as hash functions. In contrast, the modules
X and Y conflict, if they cannot function together. This might be the case, if both
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modules provide identical functionality in a different fashion. For instance, two de-
velopers could provide independent realizations of the same protocol extension. For
each dependency, the developer adds an appropriate entry that contains the name
of the required or conflicting module to the meta information.

Because modules evolve over time, each module provides a version number in its meta
information. Using these version numbers, module dependencies can be refined by
providing the minimal and maximal version number a dependency applies to. If, for
instance, a conflict between two modules is removed, both modules can limit their
incompatibility information to the concerned version numbers. In the case of one
module requiring another one in a special version, it can set both the minimal and
maximal version number to the required value.

The module preprocessing routine has an overall view of the existent components.
All modules and their dependencies are known, making the performed dependency
checks are exhaustive. As the module preprocessing routine acts before protocol
core or modules are executed, that is previous to the runtime, incompatibilities can
be found early and the developer can resolve them before the software integration.
Thus, extensive modifications after the software integration can be avoided.

5.3.5 Module Initialization

As mentioned above, we define a module initialization phase, which is initiated by
the protocol core based on information from the module preprocessing routine.

protocol core module X libmodmodule preprocessing

provide module info

initialize module X

register state items

register packet handle functions

register maintencance functions

register state items

register packet handle functions

register maintencance functions

Figure 5.7 Initialization mechanism for modules

Figure 5.7 shows an exemplary initialization process. Each module names one initial-
ization function in its meta data. The module preprocessing transfers this informa-
tion to the protocol core. Afterwards, the core executes the initialization functions
of all modules. Within its initialization function each module can register further
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functionality. The described mechanism is again an specialization of the function
registry from libmod and hence an application of the command pattern (see Section
2.1.4). The protocol core acts as invoker and performs requests (the module initial-
izations) that are not known in advance. Therefore, all initialization functions must
have the same interface. The modules act as receiver of initialization requests and
handle them.

5.4 Modular HIP

The preceding section introduced general concepts for modular protocol implemen-
tations. In order to verify our approaches and give an example for their application,
we design a modular HIP implementation. In this section, we describe the HIP
specific adoptions of the general concepts in Section 5.3.

The identification of multiple self-contained building blocks is simplified by the mod-
ular specification structure of HIP. Mandatory features are defined in the base spec-
ification and implemented in the protocol core. Optional functionalities from the
base specification or from protocol extensions are realized as modules. Firstly, we
describe a modular design for implementing the HIP base specification with the
introduced concept. Afterwards, we characterize the extensibility of the design by
describing how the end-host mobility and multihoming extension can be integrated
into the base implementation.

5.4.1 Base Functionality

The HIP base specification (RFC5201[31]) defines mandatory functionalities a HIP
implementation must provide. This section describes how the mandatory HIP func-
tionality can be implemented using our proposed design.

5.4.1.1 HIP Association State

Most notably, a host must save the current connection state (UNASSOCIATED, I1-
SENT, I2-SENT, R2-SENT, ESTABLISHED, CLOSING, CLOSED or EXCHANGE-
FAILED) for each HIP association. Additionally, various other information, such as
HI, HIT, IP address or shared key, are needed in order to realize the mandatory base
functionality. We utilize the modular state mechanism described in Section 5.3.2 for
the management of all needed state information. The protocol registers a state item
that saves the mentioned data fields for one host association. Thus, the protocol core
and modules can access the basic association state data, if necessary. Furthermore,
modules can register own state items containing extension specific information.

5.4.1.2 Handling of HIP Packets

The HIP base specification defines the syntax and semantic of the basic HIP packet
types I1, I2, R1, R2, UPDATE, NOTIFY, CLOSE and CLOSE ACK. Except for
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NOTIFY, a HIP implementation must handle all of them according to the base
specification. For the modular HIP design we apply the packet handling mechanism
described in Section 5.3.3.1 by adapting it to HIP. Due to the 7-bit packet type field
in the HIP header, the maximal packet type number is 127 and the base specification
defines eight connection states for a HIP association. For this reason, the HIP handle
function registry must distinguish handle functions for 7 times 127 (889) possible
parameter combinations.

Using the adopted handle function registry, the HIP protocol core registers its func-
tionality during the initialization. Every time a packet arrives, the protocol core
triggers the handle function registry to execute the previously registered handle
functions. Furthermore, we specify concrete priority ranges for the HIP packet han-
dling process.

1. Initialization. Prepare the packet handling and initialize required data struc-
tures.

2. Security. Check signatures and verify checksums of received packets.

3. Packet Processing. Process the received packet and trigger the desired func-
tionality. In this phase packet type and parameters of the received packet are
interpreted. Furthermore, the desired protocol functionalities are performed
and a response packet may be created.

4. Send Response. Transmit the potential response packet.

5. Clean-up. Complete the packet handling, uninitialize the used data structures
and manage timers.

In order to enable independent handle functions to collaborate, we need a mech-
anism for information transfer between the different phases and handle functions.
For this purpose, we define a data structure that is called HIP packet context and
contains information needed throughout the packet handling process. Foremost, the
received packet and the data structure for a potential reply packet reside in the
packet context. In addition, source and destination address as well as the current
host association state are part of it. The protocol core initializes the packet context.
During the packet handling process, each handle function may manipulate the packet
context in order to fulfill its purpose. An important part of the packet context is the
error flag. Each handle function may abort the further packet processing by setting
the error flag. This might be necessary, if an error in the protocol operation occurs.
For instance, if a signature or checksum verification fails.

5.4.1.3 HIP Maintenance Activities

The HIP base specification defines retransmission timers for sent control packets and
for connections in the CLOSING state. The management of such timers is a typi-
cal, periodic maintenance activity. We utilize the periodic maintenance mechanism
described Section 5.3.3.2 to provide the needed functionality.
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Retransmission timers can be realized as follows: The protocol core registers a timer
field in the modular state structure and a maintenance function that is executed
periodically, for instance every second. When a control packet is sent, the function
that transmits the packet starts the corresponding timer by setting the field to the
desired timeout value. According to the HIP base specification, timeout values for
HIP packets should exceed the anticipated worst-case round-trip time. Every time
the registered maintenance is executed, it checks if the timer is set. In the case, the
timer is set, the maintenance function decrements the value on each iteration. When
the timer value reaches zero, the timeout has been reached and a retransmission is
triggered.

5.4.2 Integration of Extensions

Now we describe how an exemplary extension for HIP can be integrated into our
design for the HIP base functionality using the end-host mobility and multihoming
extension (RFC5206[33]).

5.4.2.1 End-host Mobility and Multihoming

While the main consequences of implementing the mobility and multihoming exten-
sions result from the new LOCATOR parameter, the extension does not define a new
packet type. The existent base implementation neither specifies this parameter type
nor defines a handle functionality for it. Therefore, all logic related to locators must
be implemented in a new mobility and multihoming module. As locator parameters
may occur in R1, I2, UPDATE and NOTIFY packets ([33], Section 5.3), the packet
handling routine must be extended for multiple packet types. The mobility module
registers additional handle functions for the affected packet types. Notably, the mo-
bility and multihoming extension modifies the semantics of the HIP base exchange,
because R1 and I2 packets must be handled in a different way. Furthermore, we
need to save new state information in order to integrate the considered extension.
These are the locator data itself, that is multiple addresses per host, as well as the
locator states (locators may be UNVERIFIED, ACTIVE or DEPRECATED).

In order to realize the mobility and multihoming extension, we design a module that
depends on functionalities provided by the protocol core and libmod. There are no
additional dependencies to other modules. Thus, the module meta information must
only contain the modules name, its version and an initialization function. Regarding
our new module, the only task of the module preprocessing routine is to provide the
initialization information to the protocol core. During the module initialization, the
mobility and multihoming extension registers all further functionalities.

As mentioned above, we need to create a new state item in the modular state struc-
ture. This item is used to store all locators per associated host. The mobility and
multihoming module registers the state item during its initialization process. Af-
terwards it can access the data at any designated position. Modifications to the
protocol core are not necessary.

The packet handling is implemented in the protocol core using the function registry
concept from libmod. In order to realize the handling of LOCATOR parameters,
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the mobility and multihoming module has to modify the packet handling. For that
purpose, it registers handle functions for the needed packet types including R1,
I2, UPDATE and NOTIFY. By the usage of locators, outgoing HIP packets might
be sent to addresses the protocol core is not aware of. Thus, we add the locator
handle mechanism to the end of the packet processing. That is, we register a handle
function with the highest priority number of the packet processing range. Therefore,
the original packet handling is performed as usual. The core may create a response
packet with the source address of the received packet. After the core has finished
his handling, the mobility and multihoming extension parses the received packet for
LOCATOR parameters. If such parameters are present, it takes the desired actions
like updating the mobility and multihoming state item, which contains the locator
information. When the locator handling is finished, the module checks if there is
need to modify the response packet generated by the core. As the core does not know
locators, it might use the wrong address. The mobility and multihoming extension
can correct the address field of the outgoing packet and hence realize the desired
functionality. As the mobility and multihoming extension includes new logic for the
addressing of outgoing packets, the described locator handling mechanism must be
added to the packet handle mechanism for all packet types. The original packet
processing is not influenced by this operation.

Conclusion

The integration of the mobility and multihoming extension into the HIP base imple-
mentation shows that our modular design is extensible. Even central aspects of the
protocol, such as the handling of base exchange packets, was modified without any
changes in the protocol core. All new protocol logic is encapsulated in the module,
achieving a minimal dependency level.
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6
Implementation

The implementation of our design proposed in Section 5.3 bases on the open source
software project Host Identity Protocol for Linux (HIPL)[4]. HIPL is maintained
by the Aalto University (former Helsinki University of Technology), the Helsinki
Institute for Information Technology and the Distributed Systems Group at RWTH
Aachen University. The HIPL project implements an extensive features set of the
HIP base specification and numerous extensions including the end-host mobility
and multihoming[33], the rendezvous[26] and the registration[27] extension. Fur-
thermore, inofficial research extensions, such as BOS (see HIPL user manual[3] for
details), are realized in HIPL. The functionality of HIPL is implemented in three
userspace applications, namely the HIP daemon (hipd), the HIP firewall (hipfw)
and the HIP configuration tool (hipconf). While hipd realizes the actual protocol
functionality, the hipfw provides helper functionality for the hipd, such as reading
packets from the network stack. Furthermore, the HIP firewall allows filtering of HIP
traffic and implements a HIP proxy. hipconf can be used for runtime configuration
of the hipd. Common functionality for the applications is encapsulated in a library
called libhipcore. In addition, HIPL uses standard libraries, such as OpenSSL[42]
for cryptography support.

While HIP conceptually resides between the network and transport layers, the im-
plementation (hipd) is arranged mostly on the application layer. Therefore, HIPL
enables network packet processing in the userspace. The HIPL source code is writ-
ten in C and can be build on multiple Linux-related platforms including Linux,
OpenWRT[1] and Maemo[34]. For these platforms, the HIPL software compiles
without issues and is frequently tested.

In the following sections, we will analyze the design of HIPL and describe how we
have improved the protocol implementation by modularization of hipd. Section 6.1
presents the HIPL shortcomings that should be eliminated through the modular-
ization. Afterwards, Section 6.2 evaluates the utility of existing approaches to the
realization of our design. Subsequently, Section 6.3 describes the implementation of
the modularization library libmod and gives usage instructions. Finally, Section 6.4
presents the application of libmod to the hipd.
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6.1 HIPL Design Shortcomings

The hipd is an example for a monolithic implementation of a flexible protocol. Our
problem analysis in Chapter 4 shows that monolithic implementations of flexible
protocols are not sustainable.

Furthermore, the vast number of features implemented in HIPL intensifies this sit-
uation. Optional features of HIPL are enabled or disabled using precompiler state-
ments. These statements and hence the optional code are inserted at arbitrary
positions to the base implementation. Thus, related code blocks are distributed
among the entire code base. Indeed, this code can be disabled, that is removed by
the precompiler, but the comprehension of such scattered code is very difficult. Be-
sides the usage of precompiler statements to remove currently unused code, reduces
the code quality because the concerned code blocks are not continuously compiled.
Thus, issues regarding these code blocks, may result from recent changes, but not
be found, because the code is removed by the precompiler.

In addition, central parts of the hipd, such as the packet handling, are implemented
using static switch statements. This reduces the flexibility, because extending the
functionality requires changes to these static structures.

As application of our modular design, we will realize libmod and integrate it to HIPL.
The goal of this process is the modularization of hipd and hence the elimination of
the above shortcomings.

6.2 Evaluation of Existing Approaches

As presented in Section 3.3, there are programming frameworks that might be used
for modular protocol implementations. Now we examine whether the introduced
frameworks are applicable for the realization of our design.

6.2.1 C-Pluff

The modular design could be realized using a plug-in framework like C-Pluff (see
Section 3.3.1). Such frameworks offer the possibility to load and unload functionality
in the shape of plug-ins during runtime. In our opinion, this is a dispensable feature
for protocol implementations. End users will not change the functionality of their
systems protocol stack. For experts on protocol experimentation, it is sufficient to
define the protocol functionality during build time. Nevertheless, we examine the
consequences of dynamic plug-in loading for two reasons. Firstly, existent solutions
like C-Pluff provide this functionality. These solutions could be used in order to
reduce the implementation complexity and effort for modular protocols. Secondly,
dynamic plug-in loading could be needed in future usage scenarios that are currently
not predictable. With dynamic loading, the protocol functionality could be adapted
to the current needs during runtime. For instance, the protocol core could dynami-
cally load the handle functionality for a new packet type, when the concerned packet
type occurs the first time.
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The dynamic loading approach may cause compatibility issues. Frameworks and
hence their interfaces evolve over time. If main program and plug-ins are maintained
separately, it is possible that one installation contains plug-ins that are built for
different versions of the framework. Hence, their interfaces may be incompatible to
each other or to the main program. In the case dynamic loading, these compatibility
issues are not detected until program is executed. So, the employed components must
be adjusted after their integration. On embedded devices, such as smartphones or
routers, the replacement of components might be especially complicated or not even
possible.

Furthermore, the C-Pluff development team consist of only one person and hence
the project maintenance is strongly limited. Thus, the utilization of C-Pluff could
entail additional maintenance tasks related to the project-external C-Pluff source
code.

Due to the mentioned drawbacks of dynamic loading and the C-Pluff project, we
will not use this framework for the realization of our design.

6.2.2 libevent

In Section 3.3.2 we introduced libevent - an asynchronous event notification library.
libevent may be used to realize the desired functionality of registration callback
functions to specified events.

libevent

file_descriptor_1

file_descriptor_2

file_descriptor_n

event_a()

event_b()

event_x()

packet handlingfile_descriptor

handle_function_a()

handle_function_b()

handle_function_x()

(a) libevent structure (b) Protocol packet handling

Figure 6.1 Comparison of the simplified libevent structure with a simple packet
handling mechanism in network protocols

Figure 6.1 (a) depicts the highly simplified structure of the libevent callback mech-
anism for file descriptors. As shown, libevent focuses on a usage scenario with
multiple file descriptors that must be mapped to event handle functions. Depending
on file descriptor changes, libevent performs the designated functionality. The key
advantage of the libevent handling mechanism is its asynchronism - the handle func-
tionality may be executed in a new thread and hence the main program can resume
its work immediately.

Considering the packet handling of network protocols (Figure 6.1 (b)), the demul-
tiplexing does not necessarily depend on the file descriptor a packet was received
on, but may also depend on the packet content. In the simplest case only one file
descriptor is observed and all received data is processed by the packet handling
routine. Thus a mechanism for managing multiple file descriptors is not needed. In-
stead we need to realize packet demultiplexing based on packet type of the received
packet and the current status. Hence, the utilization of libevent for the realization
of libmod is not sustainable.
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6.3 Realization of libmod

As none of the existing solutions fits our requirements, we start with the implemen-
tation of libmod from scratch, without the utilization of existing projects. We aim
to create a generic library that realizes the design described in Section 5.3.

This section presents our implementation of libmod using the C programming lan-
guage and gives instructions how the library can be used for the implementation of
modular protocol software.

6.3.1 Modular State

The modular state structure enables protocol core and modules to register and mod-
ify state items. For each associated host, the protocol core creates a dedicated
modular state variable using functionality from libmod.

We assume that the protocol core provides a database for the management of host
association data and hence concentrate on how to structure one entry of such a
database. Protocol core and modules should be enabled to independently save and
modify information in one database entry.

During the initialization phase of the protocol software, protocol core and the mod-
ules can register state initialization functions by providing a function pointer to
libmod. Every time the protocol core needs to create a new association state vari-
able, it triggers libmod to create a new state data structure. Libmod iterates over
all registered state initialization functions and returns a pointer to the created data
structure to the core.

heap

ID, NAME
*DATA

NULL

NULL

state item

state item

*modular_state ID, NAME
*DATA

ID, NAME
*DATA

Figure 6.2 Data structure of the modular state

The modular state data structure itself is a double-linked list of state item containers.
Figure 6.2 visualizes how the modular state data structure is arranged in the memory.
Each container stores pointers for the previous and the next element as well as a
pointer to the actual state item (∗DATA). State item containers can be addressed by
integer (ID) or string (NAME) identifiers. Both values are unique and libmod stores
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their mapping. While IDs are dynamically assigned during the registration of state
items, names are chosen by the developers. However, state items can be accessed
using both values. The registering module can remember the ID and hence directly
access the state item. Other modules may be aware of the assigned string identifiers
for state items and hence access them using the name. In this case, libmod performs
the mapping from name to ID and then returns the requested data. Since the number
of existing modules and hence the number of registered state items will be limited,
the described look-up mechanisms using linked-lists should not cause performance
issues. In case, the number of state items significantly increases, the used data
structure for storing state items could be replaced with a more sophisticated one.

As described above, the modular state data structure can be used to manage the
registered state items. The actual state items are created individually by each com-
ponent. Thus, each component can define the structure of its state items, according
to its needs. This allows maximal flexibility regarding the shape of state items.
Since all mentioned variables are allocated on the heap, libmod provides a cleanup
function that frees the used memory.

6.3.2 Function Registry

The libmod function registry is designed to provide a general realization of the
publish/subscribe mechanism (see Section 5.3.3). In order to create a reusable library
that can be adapted to concrete usage scenarios, we implemented an abstract, list-
based publish-subscribe functionality based on C function pointers. The libmod

function registry provides a function for the registration of function pointers to a
specified functionality, such as the packet handling or the periodic maintenance.
For each of this functionalities exists one publish/subscribe list. Function pointers
will be added to the list according to their priorities. Thus, all registered function
pointers are sorted ascending in the respective function registry list. In addition,
registered functions can be unregistered by providing the respective list and the
function pointer itself. Again, the usage of lists should not cause performance issues,
because of the limited number of registered functions. Otherwise the data structure
could be replaced.

The implementation of further functionality, such as iterating over the list, resolving
and executing the function pointers, is left to the protocol core, because this func-
tionalities depend on the respective usage scenario. However, the general function
registry provides basis for further functionalities, such as packet handling and peri-
odic maintenance. Sections 6.4.3, 6.4.1 and 6.4.2 explain such concrete realization
for the hipd.

6.3.3 Packet Type Registry

Protocol extensions may define new packet types that are not known by the core.
Thus, the protocol core is not aware which or how many packet types exist. This
situation hinders practical functionalities, such as debugging information with packet
type information. We propose a packet type registry that stores all registered packet
types. For each packet type the responsible component (protocol core or module)
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makes an entry consisting of packet type number as integer value and packet type
name as string identifier. All components can read the information from the packet
type registry and hence all packet types are known to all components.

The string identifier might be useful as debug information, but does not add func-
tionality to the overall protocol functionality. Components can query the packet
type registry for a specific packet type number and check if the number already ex-
ist. The realization of the packet type registry bases on a linked list data structure.
Each list item stores number and string identifier of one packet type.

6.4 Applying libmod to HIP For Linux

After we have described the implementation of libmod in Section 6.3, we now present
its integration into HIPL. Our implementation concerns the hipd, as the protocol
functionality is realized in this application.

module Ymodule X

hipfw hipd hipconf

libmod

libhipcore

interactiondependency

Figure 6.3 HIPL building blocks on the implementation level

Figure 6.3 shows the HIPL components after integration of libmod. For now, only
hipd uses the modularization library. However, hipfw and hipconf are implemented
in the same fashion as hipd, they could also be modularized using libmod. The mod-
ular hipd depends on libhipcore and libmod. Modules, that provide additional
features, are integrated using the modularization library and may depend on func-
tionality of libhipcore.

In order to realize the modular design, we re-engineer hipd. The first step of this
modularization process is identifying functionalities that are integrated in the hipd,
but should be realized as modules. For that task, the precompiler statements indicate
which features are optional. We have removed these features as a start, minimizing
the protocol core to the essential functionalities. This step has considerably reduced
the complexity of hipd. However, the removed functionality can be inserted again
- in the shape of modules that can be integrated without changes to the protocol
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core. Thus, the next step is to identify useful extensions that have sufficient code
quality and to integrate them again as modules that adhere to the new design.

6.4.1 Packet Handling

We realize the packet handling routine for HIP using the general function registry
from libmod. Since the demultiplexing of HIP packets is based on the packet type
of the received packet and the current association state, these are the two essential
parameters. Hence, we need to manage a set of handle functions for each possible
combination of the two parameters. Therefore, we initialize a two-dimensional array
with the maximum parameter values as boundaries during the program startup.
After the initialization, all array fields are NULL pointers without further functioning.

In order to ensure compatibility throughout the various handle functions, we define
a mandatory data type for all handle functions. This data type specifies the return
value and the expected parameters for the registered function pointers. The reg-
istration of handle functions is done, using this consistent interface. Therefore we
create a slim wrapper function around the original register function form libmod.
The new wrapper function expects a function pointer with the mandatory data type
for handle functions, and a combination of packet type and association state. Based
on this information it chooses the adequate array entry and registers the function
pointer by executing registration functionality from libmod. The mentioned wrapper
function is an application of the adapter design pattern. The advantage of such an
implementation is its flexibility, because the internal realization is abstracted. If, for
instance, the libmod interface changes, the according modification to the protocol
core, must only be done once - in the wrapper function.

The actual packet handling routine must execute all functions that were registered
for the received packet type in the current association state. Thus, we implement
a general iteration function that executes all handle functions in a specified list.
This realization is only feasible, due to the consistent structure of all registered
function pointers. This is an application of the command design pattern. Notably,
the protocol core can iterate over the handle functions without considering the re-
spective priority, because libmod automatically sorts the handle functions according
their priority. For consistency reasons, we also create a wrapper around libmod’s
deregistration function.

Thus, all utilized functions share the same interface. Based on the consistent data
type for handle function pointers, the handle function registration can be checked
already during build-time. The compiler knows the mandatory types and hence
incompatibilities are found during compilation. Due to the static linking, incompat-
ibilities can not occur, after the build-time.

6.4.2 Periodic Maintenance

The periodic maintenance implementation bases on the same concepts as the packet
handling routine implementation (Section 6.4.1). We specialize the general func-
tion registry functionality from libmod by creating wrapper functions around the
maintenance function registration and deregistration.
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6.4.3 Module Initialization

During the protocol core startup, modules must be initialized (see Section 5.3.5). For
this purpose, each module defines an initialization function and a header file with the
adequate function prototype in its meta information. The protocol core includes a
header file, which was generated from the module preprocessing routine and contains
the information required for the module initialization. Hence, the protocol core
iterates over the provided information and executes all listed module initialization
functions. Within these functions, the modules register further functionality, such
as packet handling and periodic maintenance functionalities.

Furthermore, there is the possibility to disable integrated modules at the program’s
startup by providing the module’s name as parameter. During startup, the protocol
core checks, if the provided modules can be safely, that is without violating depen-
dencies, disabled. If so, the protocol core skips the accordant initialization functions
during module initialization. Thus, the functionality remains in the software, but
it is not registered and hence never executed. The module deactivation at startup
depends on the provided information from the preprocessing algorithm (see Section
6.5.2).

6.5 Module Preprocessing

In our opinion, there is no need to modify a protocol implementation during runtime.
Especially, end-users are not concerned about which protocol extensions are loaded,
or not. Therefore, the decision which modules should be loaded can be made before
runtime. Thus, we realize the module preprocessing mechanism in the build system
yet before the compilation starts. Hence, the compiler can greatly improve the
performance by inlining and replacement of function pointers by direct calls.

In order to enable the module preprocessing in the build system, we have evaluated
various build automation tools including CMake[25], SCons[2], Make[14] and GNU
Autotools (consisting of Autoconf[16], Automake[17] and Libtool[15]). Finally, we
chose GNU Autootools for the following reasons. First, the Autotools suite is avail-
able as standard package on all targeted platforms Linux, OpenWRT and Maemo.
Furthermore, it is widely-used in the Linux and Unix environment and hence many
developers are familiar with the used concepts. Third, HIPL already uses GNU Au-
totools as build system - thus the integration effort is limited. The actual module
preprocessing mechanism as part of the build system is realized as python[41] script,
because python provides the needed functionalities, such as file operations, parsing
of configuration files and sophisticated data types.

All modules are located in a designated source folder, called modules. Within this
folder, each module has an own directory with all needed data. Hence, modules can
be removed by simply deleting the respective directory and re-configuration of the
build system - that is executing the configure script.

As described in the design (see Section 5.3.4.1), each module provides meta infor-
mation that are analyzed during the module preprocessing. Next, Section 6.5.1
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describes how the module meta information is represented, before Section 6.5.2 ex-
plains the module preprocessing mechanism. Finally, Section 6.4.3 describes the
module initialization process.

6.5.1 Module Meta Information

We represent the module meta information in an Extensible Markup Language[44]
(XML) file. XML is an open standard for textual data formats that provides a clean
structure and is readable for programs as well as humans. Furthermore, the syntax
of XML files can be verified using XML schema definitions. Many programming
languages, including python, provide programming libraries that allow parsing and
modifying of XML files. We chose XML as representation format, because is allows a
high flexibility and can be used to elegantly express the desired data, such as module
dependencies.

<?xml version="1.0" encoding="UTF-8"?>

<module

    name="moduleX"

    version="1.0"

    description="This module provides functionality X"

    developer="John Doe"

    bugaddress="hipl-users@freelists.org"

    webpage="http://infrahip.hiit.fi/">

    <requires>

        <module name="registration" minversion="0.9" maxversion="0.9" />

        <module name="mobility" minversion="1.1" />

    </requires>

    <conflicts>

        <module name="moduleY" maxversion="0.9" />

    </conflicts>

    <application    

        name="hipd"

        header_file="modules/moduleX/hipd/moduleX.h"

        init_function="hip_moduleX_init" />

</module>

Figure 6.4 Example for module meta information in XML format

Figure 6.4 shows the structure we define for module meta information. All manda-
tory information (tags and attributes), are printed in bold font. According to the
design (see Section 5.3.4.1) each module must provide its name and version. In
addition, we define a mandatory application tag that specifies the integration of a
module and the respective program core. Thus, the application tag contains the
name of the application, a header file that will be included by this application and
a module initialization function.

Further optional fields, which have only informational character, may be present in
the meta information. These fields are description, name of the developer, address
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for bug reports as well as webpage. Modules dependencies may have two types
requires or conflicts. If a dependency tag is present, it must provide the name
as mandatory attribute. The minimum and maximum version numbers are optional
and can be used for refining the dependency. For instance, the module with the meta
information in Figure 6.4 depends on three different modules. While the registration
module is required in exactly version 0.9, the mobility module must have at least
version 1.1. The conflict with moduleY persists up to version 0.9 of moduleY.
Through the flexibility of XML, module dependencies can be expressed adequately
and elegantly.

6.5.2 Preprocessing Algorithm

We realize the module preprocessing algorithm in the build system and even before
compiler invocation. This enables a high optimization potential for the compiler.
Optimizations such as inlining and resolving of function pointers are possible, due
to the module integration being static. That means there are no changes to the
registered function pointers during runtime. Sophisticated compilers, such as the
gcc (GNU Compiler Collection [19]), can identify and realize these optimization
potentials[18].

As defined in the design (see Section 5.3.4), the preprocessing algorithm has to
perform three activities.

1. Parse module meta information.

2. Analyze meta information. This step includes verification of completeness
and dependency checks.

3. Provide module initialization information to the protocol core.

We implement these features in a python script, which is integrated into the standard
Autotools build system of HIPL and executed by the configure script. Python is
used, because it is available on the compilation tool-chains of targeted platforms and
provides convenient features for the desired tasks, such as file operations and parsing
of XML files. Furthermore, python comes with sophisticated data types that can
be used for elegant information management, such as checks of dependencies. In
order to execute the python script, we extend the project configuration mechanism.
Every time the configure script runs, it triggers the python script. Furthermore,
we create a configuration option to disable modules. If this option is used, the user
can provide a list of modules that should be disabled. This list is delegated to the
python script that will ignore the denoted modules during the parsing phase. Hence,
the module will neither be built nor linked to the protocol core.

After the python script has read the meta information of all enabled modules, it
checks whether the mandatory data was provided completely. If so, the module
dependencies are checked by iterating over all modules and verifying that all required
modules are existent and enabled. Furthermore, the preprocessing ensures that the
current configuration does not contain conflicts.
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The last step of the module preprocessing mechanism prepares the collected infor-
mation for the usage in the protocol core. Hence, the python script creates a C
header file that is included by the modular application. The header file contains a
list with all enabled modules, the respective initialization functions and the module
dependencies. However, the dependencies were checked during the preprocessing, the
application may need to perform a simplified dependency check, because modules
were disabled at program startup. Within this check, the application verifies that all
required modules are loaded or the dependent modules are disabled as well. Checks
of module versions or conflicts dependencies are not necessary, because the prepro-
cessing has already performed them and due to the static linking, incompatibilities
cannot occur after building.

Furthermore, the generated header file includes the module header files that are
specified in the meta information. Hence, the protocol core can resolve the denoted
initialization functions that are located in the module source code.
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7
Evaluation

In this chapter we discuss the results of our work by evaluating our design against
the design goals stated in Section 5.1. The evaluation consists a quantitative perfor-
mance analysis (Section 7.1) and a qualitative discussion of the design goals (Section
7.2).

7.1 Performance Analysis

In Section 6.4 we describe the application of our modularization library libmod to the
HIP for Linux project. In order to evaluate the performance-related consequences
of our modularization, we compare the original version of hipd (monolithic hipd )
with our implementation integrating libmod (modular hipd ). While both versions
of hipd are single-threaded userspace applications, they differ slightly in the imple-
mented set of extensions. The monolithic hipd contains various research extensions
that can be disabled using configure options, which cause the precompiler to remove
the respective code. In contrast, the modular version of hipd includes currently
three modules: mobility and multihoming, heartbeat and heartbeat-update. In all
test runs the utilized versions of hipd were as similar as possible. The precompiler
of the monolithic version was configured to remove all unneeded extensions and the
module preprocessing of the modular version was configured to enable all existing
modules, because we want to analyze impact caused by modules.

For our quantitative evaluation we measure the duration of the configure run in
the HIPL build system, the hipd startup and the protocol packet handling for the
basic HIP packet types I1, I2, R1, R2, UPDATE, CLOSE and CLOSE ACK. The
measurements were performed on all platforms currently supported by HIPL: Linux,
OpenWRT and Maemo.
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7.1.1 Test Setup

In order to evaluate all supported platforms, we perform measurements with one
representative for each platform. For the Linux related measurements we use two
standard personal computers with an AMD Athlon 64 X2 Dual Core Processor
4800+ at 3200 MHz and 4 Gigabyte RAM. The personal computers run Ubuntu
10.04 stocked with Linux kernel 2.6.32-21 x86 64 and were connected to an isolated
network using a Gigabit Ethernet switch. As platform for the OpenWRT related
measurements, we utilize a Linksys WRT160NL Router with an Atheros CPU at
400 MHz and 32 Megabyte RAM. For measurements on the Maemo platform, the
Nokia N900 smartphone with 600 MHz ARM Cortex CPU and 256 Megabyte sys-
tem memory is used. In order to create comparable results, the Nokia N900 was
connected to its power supply during all measurements. Thus, deviations due to
variability in the battery state and power management were reduced to a minimum.
For each performance value to be evaluated, we took a series of 100 measurements
and compute the average as well as the standard deviation, except if noted otherwise.

7.1.2 Module Preprocessing

As described in Section 6.5.2 we realize the module preprocessing in the build system.
Even if the duration of the build process does not directly relate with the protocol
implementation performance, we analyze the impacts of the modularization on the
build system in order to evaluate all aspects of our work. Since the module prepro-
cessing is embedded into the configure run, we measure the overall execution time
of one configure run with the unmodified software (Monolithic HIPL) and with the
modularized HIPL (Modular HIPL). We have performed the measurements using the
UNIX time command by executing time ./configure on the standard computers
described in 7.1.1. monolithic: standard set of features, modular with all modules
enabled.
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Figure 7.1 Average duration of one configure run with standard deviation

Figure 7.1 shows the results of our measurements. With an average configuration
time of 6.374 seconds the monolithic version is minimal faster than the modular ver-
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sion of HIPL with 6.449 seconds. The slowdown of average 0.075 seconds (+1,18%)
results from the additional execution of python, parsing the XML meta information,
checking module dependencies and creating the header file. The difference is signif-
icantly smaller than the standard deviations of 0.445 seconds for monolithic HIPL
and 0.431 seconds for modular HIPL. The high standard deviation can be explained
by the not avoidable impact of other processes running on the build computer.

The results show that it is not predictable which configure execution will be faster.
Thus, the difference between monolithic and modular HIPL is hardly perceptible in
practice and absolutely acceptable.

7.1.3 Module Initialization

The module initialization (see Section 6.4.3) for the modular hipd is performed at the
program startup. During the initialization phase modules register all of their func-
tionality the protocol core must be aware of. For instance, state items, packet handle
functions and maintenance functionality is registered during this phase. Thus, the
modularization could influence the startup time of hipd. However, the impact of
the startup time of a daemon is not a hard, because the startup is only performed
once.
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Figure 7.2 Average startup times of the hipd with standard deviation

To examine the modularization consequences, we measure the startup time of the
monolithic and the modular hipd on a PC, a WRT160NL and a Nokia N900.
Thereby, startup time denotes the time between invocation of the daemon and the
initiation of the main loop; the processing times in the main loop are objective to
another measurement (see Section 7.1.4).
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The hipd initialization phase contains necessary preparations, such as reading of con-
figuration files and opening of network sockets. For the modular version of hipd, the
initialization phase additionally includes the entire functionality registration of the
protocol core and three modules (mobility and multihoming, heartbeat, heartbeat-
update), which adds up to 130 registrations.

Figure 7.2 depicts the average startup times for the monolithic and the modular
hipd on the three target platforms and their standard deviations. The differences
between the monolithic and the modular version are nearly nonexistent. On personal
computers (PC) the average overhead amounts to 0.36 ms (<1%); on the Linksys
WRT160NL the startup of the modular version is slowed down at 0.02 ms (<1%)
and on the Nokia N900 the average startup of the modular version is actually faster
at 0.56 ms (<1%). All of these differences are significantly smaller than the standard
deviation of the respective measured values. For this reason, the we argue that the
modularization does not slow down the startup time of hipd.

7.1.4 Packet Handling

The processing of received packets is a central aspect of protocol implementations
and its execution time is an important indicator for the overall performance of a
protocol implementation. In contrast, to the initialization phase, which is per-
formed only once per execution, the packet handling mechanism is executed for
every received packet. Hence, a low performance of the packet handling could cause
unacceptable delays.

The monolithic version of hipd demultiplexes control packets using two nested
switch-statements. The outer one parses the packet and executes a hard-coded
handle function for the respective packet type. Inside of this handle function, the
inner switch statement depends on the current connection state and is used for
determining which functionality should be executed.

We have modularized the packet handling mechanism of hipd for all processed packet
types. Thereby, protocol core and modules register their handle functionality for
combinations of packet types and connection states during the initialization and
libmod executes the designated functionality, when a matched packet arrives in the
adequate state.

In order to analyze the described packet handling mechanisms, we made performance
measurements with both hipd versions on the three targeted platforms. We installed
one measuring point per packet type and quantified the entire packet processing
mechanism, starting from the packet parsing up to the transmission of the response
packet.

The test procedure contains a HIP base exchange, an UPDATE procedure and the
connection closure (see Section 2.2.3 for details). While, all operations are triggered
from the initiator host, the responder replies accordingly. Due to the heavy use of
public-key cryptography in control packets HIP, the major part of the packet process-
ing time is spend for the execution of cryptographic algorithms. The cryptographic
functionality was not modified during the modularization and for this reason, we
expect little differences for the packet handling between monolithic and modular
HIP.
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7.1.4.1 Personal Computer

We connected to standard personal computers (see Section 7.1.1) using a dedicated
Gigabit Ethernet switch and performed the test procedure described above.
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Figure 7.3 Average packet processing time on PC (initiator) with standard devi-
ation

Figure 7.3 depicts the results for the initiator. The R1 packet handling shows only
little differences (<1%) that can be explained with external influences. Notably,
the R1 packet handling lasts longer than the handling of other packets, because the
initiator must solve the responder’s puzzle challenge (see Section 2.2.3.4 for details).

The R2 packet handling has a drift of (-7.24%). This can be reasoned with a func-
tional difference between the monolithic and the modular hipd. While the modular
version encapsulates the heartbeat functionality into a dedicated module, the corre-
spondant functionality is scattered to the entire code base for the monolithic version.
The R2 packet handling in monolithic hipd contains the creation (including memory
allocation) and sending of the first heartbeat packet. This additional effort in the
monolithic version explains the higher processing time for R2 packets.

The processing of the second received UPDATE packet takes 0.14 ms (+3.55 %)
longer in the modular version of hipd. This marginal differnce bases on external
influences. CLOSE ACK packets are processed with the same average time in both
versions.

The packet processing times for the responder PC are shown in Figure 7.4. There
are marginal differences between the average packet processing time for monolithic
hipd and modular hipd for all packet types, except the first UPDATE packet. The
mentioned differences caused by external influences and hence negligable. Since the
handling of HIP I2 packets causes various cryptographic computations, the clear
difference in the processing time of I2 and the other packets is explainable.
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7.1.4.2 Nokia N900

For the performance analysis on the Maemo platform we utilize a Nokia N900 smart-
phone as initiator and a Linksys WRT160NL router running OpenWRT as responder
and connect the devices via a 802.11 wireless LAN.
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Figure 7.5 Average packet processing time on Nokia N900 (initiator) with stan-
dard deviation

For the performance measurements on the Nokia N900 (see Figure 7.5), there are
only little differences between the monolithic and the modular hipd. According to
the results on a standard computer, the R1 processing takes longer with the modular
version. Notably, the standard deviation for the R1 packet handling is extensive.
The reason for this variability are external influences that affect the performance of
the cryptographic computations, which are needed for the handling of R1 packets.
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7.1.4.3 Linksys WRT160NL

As mentioned in Section 7.1.4.2, the performance measurements for the WRT160NL
Router are taken using the Nokia N900 as initiator and the router as responder.
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Figure 7.6 Average packet processing time on Linksys WRT160NL (responder)
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The average processing times for the packet handling on the Linksys WRT160NL
router are almost identical for both versions of hipd, as shown in Figure 7.6. Similar
to the results on standard PCs, the I2 processing consumes significantly more time
than the processing of other packets.

7.2 Discussion of Design Goals

The qualitative analysis of our work discusses the conformance of our solution with
the design goals described in Section 5.1. We will refer the reader to the correspond-
ing sections when appropriate.

7.2.1 Maintainability

We argue that modular protocol implementations using libmod are better maintain-
able in comparison to monolithic implementations, because the modular structure
improves the three aspects of maintainability; namely extensibility, modifiability and
testability.

The presented modular HIP implementation based on libmod is highly extensible,
because additional functionality can be integrated in the shape of modules without
any modification to the protocol core. Modules can extend or modify the current
functionality without causing dependencies at the source code level. The ability to
add and remove handle functions (see Section 5.3.3.1) makes protocol implementa-
tions with libmod adaptable to future needs.
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In modular HIP and libmod, components (that are protocol core and modules)
utilize well-defined interfaces for accessing functionality from each other. For this
reason, changes inside components and without interface modifications, do not entail
further changes in other components. Furthermore, modules can be replaced by
other modules providing the same interface. This increases the modifiability of the
considered building blocks.

The testability of modular HIP is also improved compared to the monolithic ver-
sion, because the existing components can be tested independently. For instance,
the functionality of the protocol core could be verified without the integration of
modules. Furthermore, the functioning of different feature sets can be verified by
enabling and disabling the relevant modules. Through clear separation, the modular
structure offers intuitive mechanisms to create customized feature sets and cares for
the compliance of module dependencies.

In contrast, the “precompiler approach” used in monolithic HIPL is not able to
perform semantic checks. Each configuration option is handled isolated with the
effect of removing specific code blocks or not. There is no relation between the
available configuration options and hence all combinations of features sets are allowed
without performing sanity checks.

7.2.2 Reusability

We have achieved reusability in two dimensions: Firstly, within libmod and modular
HIP, functionalities used frequently are encapsulated into general functions, which
can be specified for the actual task. We realized this architecture by the usage of the
adapter and command design patterns. For instance, the modular packet handling
mechanism 5.3.3.1 is a specialization of the general function registry (see Section
5.3.3) from libmod.

Secondly, libmod is a general library for modular protocol implementations and also
applicable to other protocol implementations than HIPL. Hence the library as a
whole is reusable.

7.2.3 Simplicity and Structuredness

The clear modular structure of protocol implementations with libmod reduces the
implementation complexity due to the encapsulation of functionality into self-contained
building blocks. Each building block can be realized independently from other com-
ponents and thus with less complexity.

Furthermore, the clear separation of functionalities enables the definition of respon-
sibilities. Multiple developers can independently work on different modules, because
the module interaction and hence their integration is specified using well-defined
interfaces.
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7.2.4 Performance

The quantitative performance analysis in Section 7.1 shows that the modularization
of hipd does not introduce performance overhead in the three examined measuring
points build system, daemon startup and packet handling. Thus, we argue that
modular protocol implementations are feasible with the concepts used in libmod.
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Conclusion

Contemporary network protocols are adaptable to different usage scenarios and flex-
ible in order to enable forward compatibility. Our problem analysis shows that
monolithic implementations of adaptable and flexible protocols lack maintainability
and cause considerable implementation complexity, due to the loose architecture in
monolithic software. Thus, we argue that monolithic protocol implementations are
not suitable nor sustainable for this category of protocols.

Our proposed concept for modular implementations of adaptable and flexible pro-
tocols strongly bases the implementational structure on the protocol specifications.
While mandatory protocol features are an integral part of the protocol core, optional
features are encapsulated in self-contained modules that can be added to the protocol
core when necessary. The thus created modular structure allows the liberally exten-
sion of functionality. Furthermore, the consequent usage of well-defined interfaces
for component interactions increases the modifiability of existing components.

We prove the feasibility of our approach for modular protocol implementations by
realizing the protocol modularization library libmod and integrating it to the Host
Identity Protocol for Linux as an example for flexible protocols. Our quantitative and
qualitative analysis shows that the proposed modular concept significantly increases
the software quality of protocol implementations without causing performance loss.

The accomplished implementation of the HIP daemon is considered as a proof-
of-concept for the approach this thesis presents. For future work we suggest the
further application of libmod to the remaining, still monolithic, parts of HIPL.
Furthermore, our modularization concept can be applied to any other monolithic
protocol implementation.
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